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I. Introduction Rewriting theory

Rewriting theory

Describes sequences of computations through oriented identities

a.k.a. rewrite rules

In computer science In computer algebra
= Term rewriting = Polynomial reduction
= B-reduction in A-calculus = Involutive divisions

Abstraction

Abstract rewriting theory

Abstract properties common to all concrete rewriting systems:
termination, confluence, normal forms
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Abstract Rewriting System

= A an underlying set

- — a binary relation on A
We write a — b for (a, b) €—
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Abstract Rewriting System . .
. Transitive reflexive closure
= A an underlying set
. *
> bi lati A We write a — b to express that
— a binary relation on a=a—a— - —a=h

We write a — b for (a, b) €—

Confluence
Example

Y
b " ﬁ Multivariate division with respect
/

\ to R is confluent iff R is a

\ /
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I. Introduction Why confluence is not enough

Confluence “at the limit”

In K[[x, y, z]] with the inverse deglex order such that z > y > x take

R:{ny, Z—=X, y7y2’ X7X2}'
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I. Introduction Why confluence is not enough

Confluence “at the limit”

In K[[x, y, z]] with the inverse deglex order such that z > y > x take

R:{ny, Z—=X, y7y2’ X7X2}'

2 n

/)X X X

The two branches will never have a common element
Hence the system is not confluent

However with the (x, y, z)-adic topology both branches converge to 0

. J
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I. Introduction Topological abstract rewriting theory

Topological Abstract Rewriting System

= (X, 7) a topological space

- — a binary relation on X

Topological rewriting relation

Write x —© y if for every neighbourhood U of y there exists z € U s.t. x 5z

X

Note how x — y implies x @y

. J
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I. Introduction Topological abstract rewriting theory

Topological confluence

y*/X N

Theorem. [Chenavier 2020]

Standard basis < topological confluence
where standard bases are to formal power
series as Grobner bases are to polynomials
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I. Introduction Topological abstract rewriting theory

Topological confluence

N "

y z
\ ) \ )
O w @ Ow®’
Theorem. [Chenavier 2020] Of interest in computer science:
Standard basis < topological confluence infinitary \/X-terms

where standard bases are to formal power
series as Grobner bases are to polynomials
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I. Introduction

TARSs are generalisations of ARSs

Strength of confluences

For every TARS we have:
confluence —> topological confluence
— topological confluence

;

Discrete rewriting system

If x —®y implies x = y, then we say that the TARS (X, 7, —) has
discrete rewriting.

In such a case, confluence, topological confluence and
are trivially equivalent.

For instance, if 7 is the discrete topology, then (X,7,—) has
discrete rewriting.
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Counter-example of topological confluence = confluence

Consider again, in K[[x, y, z]]

R:{Z_y7 zZ—=X, y_y2’ X_Xz}'
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Counter-example of 1st converse implication
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I. Introduction

-

Counter-example of topological confluence = confluence

Consider again, in K[[x, y, z]]
R:{Z_y7 zZ—=X, y_y2’ X_Xz}'

R is a standard basis because
= LM (R) = {x,y,z} and
= if f € I(R) then f has no constant coefficient

Thus the system is topologically confluent

/>x x2 x"\®
z 0
\y % yn)

However we saw previously that it is not confluent

;

N

Counter-example of 1st converse implication
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Line with two origins

X:=(Rx{£1})/~
where (x,1) ~ (x,—1) if x #0

1 1
VneN, (5,1) — (znﬁ’l)
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where (x,1) ~ (x,—1) if x #0

1 1
VneN, (5,1) — (znﬁ’l)

(1,-1)

(1)
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I. Introduction Counter-examples of 2nd converse implication

. Cyclic relation
Line with two origins
=[0,2] CR
X =R x {£1})/ ~
where (x,1) ~ (x,—1) if x #0 L, L s L
LT L oy 2
1 1 T 2" 2n o 20+l
Vn €N, (5,1) — (znﬁ’l)

(3.1)=(3-1)

e, e

(0,1) (0,—1)
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I. Introduction

Counter-examples of 2nd converse implication

r . Cyclic relation
Line with two origins
X:=[0,2]CR
X =R x {£1})/ ~
where (x,1) ~ (x,—1) if x #0 L 1 ks 1
=L 2 2
1 1 CEN L 2n o ontl
Vn €N, (5,1) — (znﬁ’l)
(1,1)

1(1 1) f/(\\g
_l

() (1 (]
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Third counter-example

X :=(NU{o0}) x (NU {o0})
where (N U {oo}) is endowed with the order topology
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I. Introduction Counter-examples of 2nd converse implication

Third counter-example
X :=(NU{o0}) x (NU {o0})
where (N U {oo}) is endowed with the order topology
VYn,meN, (n,m)— (n+1,m) and (n,m)— (n,m+1)

Note how (n,m) = (n’,m’) iff n < n’ and m < m’

(0,0)
—

(1,0) (0,1)
4 4
(2,0) (0,2)
&) &)
(00,0) # (0, 00)
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I. Introduction Our result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order
that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is
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Equivalence of confluences Metric on formal power series

Valuation

val (xy2z2 + 2 + y) 1
val (X2yz + Xyzz) =4
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Equivalence of confluences Metric on formal power series

Valuation Metric

val (X_y2Z2 + Z3 —|—_y) = é fag € K[[Xh o '7Xn]]

1
1
val (x2yz + Xy22) =4 if,g) = oval(f—g)

Example of a convergent sequence

In K[[x, y, z]] the sequence (f,) of powers of a variable (say x) converges:

limp— o0 f, = 0 because val (x" — 0) — oo
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Equivalence of confluences Metric on formal power series

Valuation Metric
val (022 + 2 4 y) = 1 é fg €K, - xl]
1
val (*yz + xy°z) = 4 3(f.8) = g

Example of a convergent sequence

In K[[x, y, z]] the sequence (f,) of powers of a variable (say x) converges:

limp— o0 f, = 0 because val (x" — 0) — oo
n— oo

Hence in the example of the introduction:

X X2 .. Xn

e o
Ny
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Monomial orders

= Total order compatible with monomial multiplication
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Equivalence of confluences Local monomial orders

Monomial orders

= Total order compatible with monomial multiplication
- Global if 1 is minimal — Grobner bases
- Local if 1 is maximal —

- Compatible with the degree if the degree function on monomials is
non-increasing (resp. non-decreasing) for a local (resp. global) order

Consequence: if < is a local order compatible with the degree then

val (f) = deg (LM (f))
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Equivalence of confluences Ideals are topologically closed

Ideals of formal power series are topologically closed

> K][x1, -, xn]]: local noetherian topological ring with respect to the
(x1, - - -, xn)-adic topology. Therefore a Zariski ring
[Samuel, Zariski, 1975]
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Equivalence of confluences Ideals are topologically closed

Ideals of formal power series are topologically closed

> K][x1, -, xn]]: local noetherian topological ring with respect to the
(x1, - - -, xn)-adic topology. Therefore a Zariski ring
[Samuel, Zariski, 1975]

- Constructive proof providing a cofactor representation of a formal
power series in the topological closure of the ideal
[Chenavier, Cluzeau, ML, 2024]
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Equivalence of confluences Consequence of rewriting topologically

[ Proposition. For all f,g € K[[x1,---,x,]], if f ®g then f —g €/ ]
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-

;

Proposition. For all f,g € K[[x1, -, xa]], if f -© g then f — g€l

Proof. f —® g implies the existence of a sequence fi € K][[x1, - - -, xn]] such
that f = fi and 6(fi, g) < 27 so that limy_,o0 fk = g

By the same reasoning as polynomial reduction, f = fi implies f — fi € |
thus at the limit we obtain limy_oo(f — fi) =f — g € |

But / is topologically closed, hence f — g € /

N
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Equivalence of confluences Proof of the result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order
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Equivalence of confluences

Proof of the result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order

that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is

-

.

Strategy: Given

Close the diagram
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Equivalence of confluences Proof of the result

- Fix R a non-empty set of non-zero formal power series
= Fix < a local monomial order compatible with the degree

- Write — the one-step rewriting relation induced by R and <
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Equivalence of confluences Proof of the result

- Fix R a non-empty set of non-zero formal power series
= Fix < a local monomial order compatible with the degree
- Write — the one-step rewriting relation induced by R and <

Assume that — is topologically confluent ji.e. Ris a with
respect to < of the ideal / := I(R) generated by R

Let f, g, h € K[[x, - - -, xn]] such that:

PN
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Equivalence of confluences Proof of the result

Goal

Construct inductively two rewriting sequences starting from g and h re-
spectively that will be proven to be Cauchy

It will turn out that the limits are then equal and hence give a common
topological successor to g and h
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Equivalence of confluences

- By induction:
3g = gk and Ih > hy

Proof of the result

— B R—

21/24



Equivalence of confluences

- By induction:
3g = gk and Ih > hy

> If gk = hyg, then it's over!

Proof of the result

— B R—

21/24



Equivalence of confluences

- By induction:
3g > g« and I S hy

> If gk = hyg, then it's over!

-> From the previous proposition:

gk —h el

Proof of the result

— B R—

21/24



Equivalence of confluences Proof of the result

- By induction:
3g > g« and I S hy

> If gk = hyg, then it's over!

— B R—
<7

ha
-> From the previous proposition:
8k —he el l
- Rewrite LM (g — hi) l l
8k hi
8k+1 ht1
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Equivalence of confluences Proof of the result

Facts

- the sequences (gk)ken and (hi)ken are Cauchy

=> their limits are equal
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Equivalence of confluences Proof of the result

Facts

- the sequences (gk)ken and (hi)ken are Cauchy

=> their limits are equal

s N

SO Iimk_mo Bk = Iimk_mo hk =/

Which shows that — is

; J
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Conclusion and perspectives

Summary of presented notions and results:

> we introduced different confluence properties for topological
rewriting systems

> we provided counter-examples for converse strength implications

> we showed that topological confluence is equivalent to
for formal power series thanks to the topological clo-
sure of ideals

Further works:
> study abstract properties of topological rewriting systems

(e.g. C-R property, Newman's Lemma, etc ...)

> show that the topological rewriting relation induces convergent
rewriting chains in the context of formal power series

> develop computational tools to study Taylor series and formal
solutions of PDEs

24 /24



Conclusion and perspectives

Summary of presented notions and results:

> we introduced different confluence properties for topological
rewriting systems

> we provided counter-examples for converse strength implications

> we showed that topological confluence is equivalent to
for formal power series thanks to the topological clo-
sure of ideals

Further works:
> study abstract properties of topological rewriting systems

(e.g. C-R property, Newman's Lemma, etc ...)

> show that the topological rewriting relation induces convergent
rewriting chains in the context of formal power series

> develop computational tools to study Taylor series and formal
solutions of PDEs

THANK YOU FOR LISTENING!
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