Confluence for topological rewriting systems

Adya Musson-Leymarie https://www.adyaml.com

FELIM - Functional Equations in Limoges

March 26th, 2024

I. INTRODUCTION

Rewriting theory

Describes sequences of computations through oriented identities

a.k.a. rewrite rules

Transitive reflexive closure We write $a \stackrel{*}{\rightarrow} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_{\ell} = b$

Transitive reflexive closure We write $a \stackrel{*}{\rightarrow} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_{\ell} = b$

Transitive reflexive closure We write $a \stackrel{*}{\rightarrow} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_{\ell} = b$

Multivariate division with respect to R is **confluent** iff R is a **Gröbner basis**

Topological Abstract Rewriting System

- → (X, τ) a topological space → → a binary relation on X

Topological Abstract Rewriting System

- \rightarrow (X, τ) a topological space
- ightarrow ightarrow a binary relation on X

Theorem. [Chenavier 2020] Standard basis ⇔ topological confluence where standard bases are to formal power series as Gröbner bases are to polynomials

Theorem. [Chenavier 2020] Standard basis ⇔ topological confluence where standard bases are to formal power series as Gröbner bases are to polynomials Of interest in computer science: infinitary $\lambda/\Sigma\text{-terms}$

For every TARS we have: confluence \implies topological confluence infinitary confluence \implies topological confluence

For every TARS we have: confluence \implies topological confluence infinitary confluence \implies topological confluence

Discrete rewriting system

If $x \rightarrow y$ implies $x \rightarrow y$, then we say that the TARS (X, τ, \rightarrow) has discrete rewriting.

For every TARS we have: confluence \implies topological confluence infinitary confluence \implies topological confluence

Discrete rewriting system

If $x \rightarrow y$ implies $x \rightarrow y$, then we say that the TARS (X, τ, \rightarrow) has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

For every TARS we have: confluence \implies topological confluence infinitary confluence \implies topological confluence

Discrete rewriting system

If $x \rightarrow y$ implies $x \rightarrow y$, then we say that the TARS (X, τ, \rightarrow) has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

For instance, if τ is the discrete topology, then (X, τ, \rightarrow) has discrete rewriting.

Counter-example of topological confluence \Rightarrow confluence Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

Counter-example of topological confluence \Rightarrow confluence Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

R is a standard basis because

- → LM (R) = {x, y, z} and
- → if $f \in I(R)$ then f has no constant coefficient

Counter-example of topological confluence \Rightarrow confluence Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

R is a standard basis because

→ LM (R) = {x, y, z} and

→ if $f \in I(R)$ then f has no constant coefficient

Thus the system is topologically confluent

However we saw previously that it is not confluent

$$X:=\left(\mathbb{R} imes\{\pm1\}
ight)/\sim$$
 where $(x,1)\sim(x,-1)$ if $x
eq 0$

$$\forall n \in \mathbb{N}, \quad \left(\frac{1}{2^n}, 1\right) \to \left(\frac{1}{2^{n+1}}, 1\right)$$

Counter-examples of 2nd converse implication

$$X := (\mathbb{N} \cup \{\infty\}) \times (\mathbb{N} \cup \{\infty\})$$

where $(\mathbb{N} \cup \{\infty\})$ is endowed with the order topology

 $orall n,m\in\mathbb{N}, \hspace{0.3cm} (n,m)
ightarrow (n+1,m) \hspace{0.3cm} ext{and} \hspace{0.3cm} (n,m)
ightarrow (n,m+1)$

Note how $(n, m) \stackrel{*}{\rightarrow} (n', m')$ iff $n \leq n'$ and $m \leq m'$

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

II. EQUIVALENCE OF CONFLUENCES

Valuation

$$\operatorname{val}\left(xy^{2}z^{2}+z^{3}+y\right)=1$$
$$\operatorname{val}\left(x^{2}yz+xy^{2}z\right)=4$$

Metric on formal power series

Valuation	
$\operatorname{val}\left(xy^{2}z^{2}+z^{3}+y\right)=1$ $\operatorname{val}\left(x^{2}yz+xy^{2}z\right)=4$	

Metric
$$f,g \in \mathbb{K}[[x_1,\cdots,x_n]]$$
 $\delta(f,g) := rac{1}{2^{\mathsf{val}(f-g)}}$

Example of a convergent sequence

In $\mathbb{K}[[x, y, z]]$ the sequence (f_n) of powers of a variable (say x) converges: $\lim_{n\to\infty} f_n = 0$ because val $(x^n - 0) \xrightarrow[n\to\infty]{} \infty$

Example of a convergent sequence

In $\mathbb{K}[[x, y, z]]$ the sequence (f_n) of powers of a variable (say x) converges: $\lim_{n\to\infty} f_n = 0$ because val $(x^n - 0) \xrightarrow[n\to\infty]{} \infty$ Hence in the example of the introduction:

 \rightarrow Total order compatible with monomial multiplication

- \rightarrow Total order compatible with monomial multiplication
- $\textbf{ \rightarrow }$ Global if 1 is minimal \rightarrow Gröbner bases
- → Local if 1 is maximal → Standard bases

Monomial orders

- → Total order compatible with monomial multiplication
- $\textbf{ \rightarrow }$ Global if 1 is minimal \rightarrow Gröbner bases
- → Local if 1 is maximal → Standard bases
- → Compatible with the degree if the degree function on monomials is non-increasing (resp. non-decreasing) for a local (resp. global) order

- → Total order compatible with monomial multiplication
- → Global if 1 is minimal \rightarrow Gröbner bases
- → Local if 1 is maximal → Standard bases
- → Compatible with the degree if the degree function on monomials is non-increasing (resp. non-decreasing) for a local (resp. global) order

Consequence: if < is a local order compatible with the degree then

 $\mathsf{val}\left(f\right) = \mathsf{deg}\left(\mathsf{LM}\left(f\right)\right)$

Ideals of formal power series are topologically closed

→ $\mathbb{K}[[x_1, \dots, x_n]]$: local noetherian topological ring with respect to the (x_1, \dots, x_n) -adic topology. Therefore a **Zariski ring** [Samuel, Zariski, 1975]

Ideals of formal power series are topologically closed

- → K[[x₁, · · ·, x_n]]: local noetherian topological ring with respect to the (x₁, · · ·, x_n)-adic topology. Therefore a Zariski ring [Samuel, Zariski, 1975]
- → Constructive proof providing a cofactor representation of a formal power series in the topological closure of the ideal [Chenavier, Cluzeau, ML, 2024]

Proof. $f \oplus g$ implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \dots, x_n]]$ such that $f \stackrel{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

Proof. $f \to g$ implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \dots, x_n]]$ such that $f \stackrel{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

By the same reasoning as polynomial reduction, $f \xrightarrow{*} f_k$ implies $f - f_k \in I$ thus at the limit we obtain $\lim_{k\to\infty} (f - f_k) = f - g \in \overline{I}$

Proof. $f \to g$ implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \cdots, x_n]]$ such that $f \stackrel{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

By the same reasoning as polynomial reduction, $f \xrightarrow{*} f_k$ implies $f - f_k \in I$ thus at the limit we obtain $\lim_{k\to\infty} (f - f_k) = f - g \in \overline{I}$

But I is topologically closed, hence $f - g \in I$

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

- \rightarrow Fix < a local monomial order compatible with the degree
- \rightarrow Write \rightarrow the one-step rewriting relation induced by R and <

- \rightarrow Fix < a local monomial order compatible with the degree
- \rightarrow Write \rightarrow the one-step rewriting relation induced by R and <

Assume that \rightarrow is topologically confluent *i.e.* R is a standard basis with respect to < of the ideal I := I(R) generated by R

Goal

Construct inductively **two rewriting sequences** starting from g and h respectively that will be proven to be **Cauchy**

It will turn out that the limits are then equal and hence give a **common** topological successor to g and h

Proof of the result

→ By induction: $\exists g \xrightarrow{*} g_k \text{ and } \exists h \xrightarrow{*} h_k$

Proof of the result

- → By induction: $\exists g \xrightarrow{*} g_k \text{ and } \exists h \xrightarrow{*} h_k$
- → If $g_k = h_k$, then it's over!

Ø

h

 h_1

 h_2

 h_k

- → By induction: $\exists g \xrightarrow{*} g_k$ and $\exists h \xrightarrow{*} h_k$
- → If $g_k = h_k$, then it's over!
- → From the previous proposition:

$$g_k - h_k \in I$$

Facts

→ the sequences $(g_k)_{k \in \mathbb{N}}$ and $(h_k)_{k \in \mathbb{N}}$ are Cauchy

 \rightarrow their limits are equal

Facts

→ the sequences $(g_k)_{k \in \mathbb{N}}$ and $(h_k)_{k \in \mathbb{N}}$ are Cauchy

 \rightarrow their limits are equal

So $\lim_{k\to\infty} g_k = \lim_{k\to\infty} h_k =: \ell$

Which shows that \rightarrow is infinitary confluent

III. CONCLUSION AND PERSPECTIVES

THANK YOU FOR LISTENING!