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I. Introduction Rewriting theory

Rewriting theory

Describes sequences of computations through oriented identities
a.k.a. rewrite rules

In computer science
➔ Term rewriting

➔ β-reduction in λ-calculus

Instances

In computer algebra
➔ Polynomial reduction

➔ Involutive divisions

Abstract rewriting theory

Abstract properties common to all concrete rewriting systems:
termination, confluence, normal forms

Abstraction
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I. Introduction Discrete confluence

Abstract Rewriting System
➔ A an underlying set

➔ → a binary relation on A
We write a → b for (a, b) ∈→

Transitive reflexive closure

We write a ∗→ b to express that
a = a0 → a1 → · · · → aℓ = b

Confluence
a

b c

d

∗ ∗

∗ ∗

Example

Multivariate division with respect
to R is confluent iff R is a
Gröbner basis
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I. Introduction Why confluence is not enough

Confluence “at the limit”
In K[[x , y , z]] with the inverse deglex order such that z > y > x take

R = {z − y , z − x , y − y 2, x − x2}.

x x2 · · · xn

z

y y 2 · · · yn

The two branches will never have a common element
Hence the system is not confluent

However with the (x , y , z)-adic topology both branches converge to 0
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I. Introduction Topological abstract rewriting theory

Topological Abstract Rewriting System

➔ (X , τ) a topological space

➔ → a binary relation on X

Topological rewriting relation

Write x y if for every neighbourhood U of y there exists z ∈ U s.t. x ∗→ z

y

x

z

*

Note how x ∗→ y implies x y
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I. Introduction Topological abstract rewriting theory

Topological confluence

x

y z

w

∗ ∗

Theorem. [Chenavier 2020]
Standard basis ⇔ topological confluence
where standard bases are to formal power
series as Gröbner bases are to polynomials

Infinitary confluence

x

y z

w

Of interest in computer science:
infinitary λ/Σ-terms
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I. Introduction TARSs are generalisations of ARSs

Strength of confluences
For every TARS we have:
confluence =⇒ topological confluence
infinitary confluence =⇒ topological confluence

Discrete rewriting system

If x y implies x ∗→ y , then we say that the TARS (X , τ, →) has
discrete rewriting.

In such a case, confluence, topological confluence and infinitary
confluence are trivially equivalent.

For instance, if τ is the discrete topology, then (X , τ, →) has
discrete rewriting.
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I. Introduction Counter-example of 1st converse implication

Counter-example of topological confluence ⇒ confluence
Consider again, in K[[x , y , z]]

R = {z − y , z − x , y − y 2, x − x2}.

R is a standard basis because
➔ LM (R) = {x, y, z} and

➔ if f ∈ I(R) then f has no constant coefficient

Thus the system is topologically confluent

x x2 · · · xn

z 0

y y 2 · · · yn

However we saw previously that it is not confluent
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I. Introduction Counter-examples of 2nd converse implication

Line with two origins

X := (R × {±1}) / ∼
where (x , 1) ∼ (x , −1) if x ̸= 0

∀n ∈ N,

( 1
2n , 1

)
→

( 1
2n+1 , 1

)

(1, 1) = (1, −1)

(
1
2 , 1

)
=

(
1
2 , −1

)
(

1
4 , 1

)
=

(
1
4 , −1

)
(0, 1) ̸= (0, −1)

Cyclic relation

X := [0, 2] ⊂ R

1
2n+1

1
2n 2 − 1

2n 2 − 1
2n+1

1

1
2

3
2

1
4

7
4

1
8

15
8

0 ̸= 2
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I. Introduction Counter-examples of 2nd converse implication

Third counter-example

X := (N ∪ {∞}) × (N ∪ {∞})

where (N ∪ {∞}) is endowed with the order topology

∀n, m ∈ N, (n, m) → (n + 1, m) and (n, m) → (n, m + 1)

Note how (n, m) ∗→ (n′, m′) iff n ≤ n′ and m ≤ m′

(0, 0)

(1, 0) (0, 1)

(2, 0) (0, 2)

(∞, 0) ̸= (0, ∞)
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I. Introduction Our result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order
that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is infinitary confluent.
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II. EQUIVALENCE OF CONFLUENCES
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Equivalence of confluences Metric on formal power series

Valuation

val
(
xy 2z2 + z3 + y

)
= 1

val
(
x2yz + xy 2z

)
= 4

Metric

f , g ∈ K[[x1, · · ·, xn]]

δ(f , g) := 1
2val(f −g)

Example of a convergent sequence

In K[[x , y , z]] the sequence (fn) of powers of a variable (say x) converges:
limn→∞ fn = 0 because val (xn − 0) −→

n→∞
∞

Hence in the example of the introduction:

x x2 · · · xn

z 0

y y 2 · · · yn
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Equivalence of confluences Local monomial orders

Monomial orders
➔ Total order compatible with monomial multiplication

➔ Global if 1 is minimal → Gröbner bases

➔ Local if 1 is maximal → Standard bases

➔ Compatible with the degree if the degree function on monomials is
non-increasing (resp. non-decreasing) for a local (resp. global) order

Consequence: if < is a local order compatible with the degree then

val (f ) = deg (LM (f ))
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Equivalence of confluences Ideals are topologically closed

Ideals of formal power series are topologically closed
➔ K[[x1, · · ·, xn]]: local noetherian topological ring with respect to the

(x1, · · ·, xn)-adic topology. Therefore a Zariski ring
[Samuel, Zariski, 1975]

➔ Constructive proof providing a cofactor representation of a formal
power series in the topological closure of the ideal
[Chenavier, Cluzeau, ML, 2024]
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Equivalence of confluences Consequence of rewriting topologically

Proposition. For all f , g ∈ K[[x1, · · ·, xn]], if f g then f − g ∈ I

Proof. f g implies the existence of a sequence fk ∈ K[[x1, · · ·, xn]] such
that f ∗→ fk and δ(fk , g) < 2−k so that limk→∞ fk = g

By the same reasoning as polynomial reduction, f ∗→ fk implies f − fk ∈ I
thus at the limit we obtain limk→∞(f − fk) = f − g ∈ I

But I is topologically closed, hence f − g ∈ I

17 / 24



Equivalence of confluences Consequence of rewriting topologically

Proposition. For all f , g ∈ K[[x1, · · ·, xn]], if f g then f − g ∈ I

Proof. f g implies the existence of a sequence fk ∈ K[[x1, · · ·, xn]] such
that f ∗→ fk and δ(fk , g) < 2−k so that limk→∞ fk = g

By the same reasoning as polynomial reduction, f ∗→ fk implies f − fk ∈ I
thus at the limit we obtain limk→∞(f − fk) = f − g ∈ I

But I is topologically closed, hence f − g ∈ I

17 / 24



Equivalence of confluences Consequence of rewriting topologically

Proposition. For all f , g ∈ K[[x1, · · ·, xn]], if f g then f − g ∈ I

Proof. f g implies the existence of a sequence fk ∈ K[[x1, · · ·, xn]] such
that f ∗→ fk and δ(fk , g) < 2−k so that limk→∞ fk = g

By the same reasoning as polynomial reduction, f ∗→ fk implies f − fk ∈ I
thus at the limit we obtain limk→∞(f − fk) = f − g ∈ I

But I is topologically closed, hence f − g ∈ I

17 / 24



Equivalence of confluences Consequence of rewriting topologically

Proposition. For all f , g ∈ K[[x1, · · ·, xn]], if f g then f − g ∈ I

Proof. f g implies the existence of a sequence fk ∈ K[[x1, · · ·, xn]] such
that f ∗→ fk and δ(fk , g) < 2−k so that limk→∞ fk = g

By the same reasoning as polynomial reduction, f ∗→ fk implies f − fk ∈ I
thus at the limit we obtain limk→∞(f − fk) = f − g ∈ I

But I is topologically closed, hence f − g ∈ I

17 / 24



Equivalence of confluences Proof of the result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order
that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is infinitary confluent.

Strategy: Given
f

g h

ℓ
Close the diagram

18 / 24
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Equivalence of confluences Proof of the result

➔ Fix R a non-empty set of non-zero formal power series

➔ Fix < a local monomial order compatible with the degree

➔ Write → the one-step rewriting relation induced by R and <

Assume that → is topologically confluent i.e. R is a standard basis with
respect to < of the ideal I := I(R) generated by R

Let f , g , h ∈ K[[x1, · · ·, xn]] such that:

f

g h

19 / 24
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Equivalence of confluences Proof of the result

Goal

Construct inductively two rewriting sequences starting from g and h re-
spectively that will be proven to be Cauchy

It will turn out that the limits are then equal and hence give a common
topological successor to g and h

20 / 24



Equivalence of confluences Proof of the result

f

g h

g1 h1

g2 h2

...
...

gk hk

gk+1 hk+1

➔ By induction:
∃g ∗→ gk and ∃h ∗→ hk

➔ If gk = hk , then it’s over!

➔ From the previous proposition:

gk − hk ∈ I

➔ Rewrite LM (gk − hk)

21 / 24
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Equivalence of confluences Proof of the result

Facts
➔ the sequences (gk)k∈N and (hk)k∈N are Cauchy

➔ their limits are equal

So limk→∞ gk = limk→∞ hk =: ℓ

f

g h

ℓ

Which shows that → is infinitary confluent
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Conclusion and perspectives

Summary of presented notions and results:

▷ we introduced different confluence properties for topological
rewriting systems

▷ we provided counter-examples for converse strength implications

▷ we showed that topological confluence is equivalent to infinitary
confluence for formal power series thanks to the topological clo-
sure of ideals

Further works:

▷ study abstract properties of topological rewriting systems
(e.g. C-R property, Newman’s Lemma, etc . . .)

▷ show that the topological rewriting relation induces convergent
rewriting chains in the context of formal power series

▷ develop computational tools to study Taylor series and formal
solutions of PDEs

THANK YOU FOR LISTENING!
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