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I. Introduction Rewriting theory

Rewriting theory

Describes sequences of computations through oriented identities

a.k.a. rewrite rules

In computer science In computer algebra
= Term rewriting = Polynomial reduction
= B-reduction in A-calculus = Involutive divisions

Abstraction

Abstract rewriting theory

Abstract properties common to all concrete rewriting systems:
termination, confluence, normal forms
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I. Introduction Discrete confluence

Abstract Rewriting System

= A an underlying set

- — a binary relation on A
We write a — b for (a, b) €—

5/33



I. Introduction Discrete confluence

Abstract Rewriting System . .
. Transitive reflexive closure
= A an underlying set N
> bi lati A We write a — b to express that
— a binary relation on a=a—a— - —a=h

We write a — b for (a, b) €—

5/33



I. Introduction Discrete confluence

Abstract Rewriting System . .
. Transitive reflexive closure
= A an underlying set
. *
> bi lati A We write a — b to express that
— a binary relation on a=a—a— - —a=h

We write a — b for (a, b) €—

Confluence
* a *
N
b c

\ /

*\\\> d (///*

5/33



I. Introduction Discrete confluence

Abstract Rewriting System . .
. Transitive reflexive closure
= A an underlying set
. *
> bi lati A We write a — b to express that
— a binary relation on a=a—a— - —a=h

We write a — b for (a, b) €—

Confluence
Example

Y
b " ﬁ Multivariate division with respect
/

\ to R is confluent iff R is a

\ /

*\\\> d (///*
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I. Introduction Why confluence is not enough

Confluence “at the limit”

In K[[x, y, z]] with the inverse deglex order such that z > y > x take

R:{ny, Z—=X, y7y2’ X7X2}'
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I. Introduction Why confluence is not enough

Confluence “at the limit”

In K[[x, y, z]] with the inverse deglex order such that z > y > x take

R:{ny, Z—=X, y7y2’ X7X2}'

2 n

/)X X X

The two branches will never have a common element
Hence the system is not confluent

However with the (x, y, z)-adic topology both branches converge to 0

. J
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I. Introduction Topological abstract rewriting theory

Topological Abstract Rewriting System

= (X, 7) a topological space

- — a binary relation on X
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I. Introduction Topological abstract rewriting theory

Topological Abstract Rewriting System

= (X, 7) a topological space

- — a binary relation on X

Topological rewriting relation
Write x —© y if for every neighbourhood U of y there exists z € U s.t. x 5z
X
*
Note how x — y implies x @y
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Topological confluence
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I. Introduction Topological abstract rewriting theory

Topological confluence

P 7

’

A 7

Ow &

Strength of confluences

For every TARS we have:
confluence =—> topological confluence
— topological confluence
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Discrete rewriting system

If x —®y implies x = y, then we say that the TARS (X, 7, —) has
discrete rewriting.
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Discrete rewriting system

If x —®y implies x = y, then we say that the TARS (X, 7, —) has
discrete rewriting.

In such a case, confluence, topological confluence and
are trivially equivalent.

For instance, if 7 is the discrete topology, then (X,7,—) has
discrete rewriting.

; J
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I. Introduction Counter-examples of 2nd converse implication

Line with two origins

X:=(Rx{£1})/~
where (x,1) ~ (x,—1) if x #0

1 1
VneN, (5,1) — (znﬁ’l)

10/33



I. Introduction Counter-examples of 2nd converse implication

Line with two origins

X:=(Rx{£1})/~
where (x,1) ~ (x,—1) if x #0

1 1
VneN, (5,1) — (znﬁ’l)

(1,-1)

(1)

®/\@

(0,1) (0,—1)

10/33



I. Introduction Counter-examples of 2nd converse implication

. Cyclic relation
Line with two origins
=[0,2] CR
X =R x {£1})/ ~
where (x,1) ~ (x,—1) if x #0 L, L s L
LT L oy 2
1 1 T 2" 2n o 20+l
Vn €N, (5,1) — (znﬁ’l)

(3.1)=(3-1)

e, e

(0,1) (0,—1)
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I. Introduction

Counter-examples of 2nd converse implication

Line with two origins

X:=(Rx{£1})/~
where (x,1) ~ (x,—1) if x #0

1 1
VneN, (5,1) — (znﬁ’l)

(1,-1)

(1-)
- @/ \@

(0,-1)

Cyclic relation

=[0,2] CR
—
1 g 5_ 1 5 1
on+1 2n on on+1
— K
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1/\3
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I. Introduction Counter-examples of 2nd converse implication

Third counter-example

X :=(NU{o0}) x (NU {o0})
where (N U {oo}) is endowed with the order topology
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Third counter-example
X :=(NU{o0}) x (NU {o0})
where (N U {oo}) is endowed with the order topology
VYn,meN, (n,m)— (n+1,m) and (n,m)— (n,m+1)

Note how (n,m) = (n’,m’) iff n < n’ and m < m’

(0,0)
—

(1,0) (0,1)
4 4
(2,0) (0,2)
&) &)
(00,0) # (0, 00)
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I. Introduction The (xi, - - -, Xp)-axic topology

Valuation

val (Xy222 +224+ y) =1
val (X2yz + nyZ) =4
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I. Introduction The (xi, - - -, Xp)-axic topology

Valuation Metric
val (22 1 2 +y) = 1 é fg € Klx, - xi)
1
val (x’yz + xy’z) = 4 6(f,g) = T

Cauchy-completion

Formal power series .
h Cauchy sequences in K[xi, - - -, Xn]

Denoted by K[[x1, -+, X]] modulo (xn)n ~ (¥a)n if and only
if limp_o0 0(Xn,yn) =0
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I. Introduction Structure of formal power series

Structure on K[[x, - - -, xa]]

Algebra operations on K[xy, - - -, x,] are continuous
Hence extend naturally on K[[x1, - - -, Xs]]

Therefore K[[x1, - - -, xn]] is a topological algebra
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I. Introduction Structure of formal power series

Structure on K[[x, - - -, xa]]

Algebra operations on K[xy, - - -, x,] are continuous

Hence extend naturally on K[[x1, - - -, Xs]]

Therefore K[[x1, - - -, xn]] is a topological algebra

;

Formal power series as infinite linear combinations of monomials

K][[x1, - - -, xn]] isomorphic to the dual vector space of K[xi, - - -, xn]
Since the monoid [x1, - - -, x»] of monomials is a basis of K[xi, - - -, xn]

feK[[x, -xa] <« f:[x, -, xa] > Kamap
Denote (f[m) := f(m) then f =% . (flm)m
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I. Introduction Our results

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let / be an ideal of commutative formal power series.

Given any f in the topological closure of /, we can compute a cofactor
representation of f with respect to a system of generators of /.

In other words, we prove constructively that / is topologically closed.

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of commutative formal power series and < be a local
monomial order that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is
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Il. Ideals of formal power series Rewriting of formal power series

Local monomial orders

- Total order compatible with monomial multiplication
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Il. Ideals of formal power series Rewriting of formal power series

Local monomial orders

- Total order compatible with monomial multiplication

- Local: 1 is maximal

- Compatible with the degree if the total degree function on mono-
mials is decreasing.

Consequence: if < is a local order compatible with the degree then

val () = deg (LM (f))

-

N

Rewriting on formal power series: same as multivariate division on poly-
nomials but with respect to

= a local order < compatible with the degree

- a set R of non-zero formal power series
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Il. Ideals of formal power series Standard bases

Standard bases

Defined syntactically like Grobner
bases for polynomials i.e.
a subset G C | of an ideal

(LM (6)) = LM (1)

(Note: LM is w.r.t. the local order)
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Il. Ideals of formal power series Standard bases

Standard bases

Defined syntactically like Grobner Theorem [Chenavier, 2020].
bases for polynomials i.e. R is a standard basis of the ideal it
a subset G C | of an ideal generates for a local order < if, and
only if, the system induced by R and

(LM (G)) = LM (/) < is topologically confluent.

(Note: LM is w.r.t. the local order)
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Il. Ideals of formal power series

-

Counter-example of topological confluence = confluence

Consider again, in K[[x, y, z]]

R:{Z_y7 zZ—=X, y_y2’ X_Xz}'

N

Counter-example of 1st converse implication
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-

Counter-example of topological confluence = confluence
Consider again, in K[[x, y, z]]
R:{Z_y7 zZ—=X, y_y2’ X_Xz}'

R is a standard basis because
= LM (R) = {x,y,z} and

= if f € I(R) then f has no constant coefficient

N

Counter-example of 1st converse implication
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Il. Ideals of formal power series

-

Counter-example of topological confluence = confluence

Consider again, in K[[x, y, z]]
R:{Z_y7 zZ—=X, y_y2’ X_Xz}'

R is a standard basis because
= LM (R) = {x,y,z} and
= if f € I(R) then f has no constant coefficient

Thus the system is topologically confluent

/>x x2 x"\®
z 0
\\\\\$ y % . Yo /////59

However we saw previously that it is not confluent

;

N

Counter-example of 1st converse implication
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Il. Ideals of formal power series Ideals are topologically closed

Ideals of formal power series are topologically closed

> K][x1, -, xn]]: local noetherian topological ring with respect to the
(x1, - - -, xn)-adic topology. Therefore a Zariski ring
[Samuel, Zariski, 1975]
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Il. Ideals of formal power series Ideals are topologically closed

Ideals of formal power series are topologically closed

> K][x1, -, xn]]: local noetherian topological ring with respect to the
(x1, - - -, xn)-adic topology. Therefore a Zariski ring
[Samuel, Zariski, 1975]

- Constructive proof providing a cofactor representation of a formal
power series in the topological closure of the ideal
[Chenavier, Cluzeau, ML, 2024]
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Il. Ideals of formal power series Preliminary lemma

Lemma. Let / be an ideal in K[[x1,- -, x»]] and < be a local monomial
order compatible with the degree

Then LM (7) = LM (/) where | denotes the topological closure of /
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-

;

Lemma. Let / be an ideal in K[[x1,- -, x»]] and < be a local monomial
order compatible with the degree

Then LM (7) = LM (/) where | denotes the topological closure of /

N

-

Proof. If f € I\ {0} then 3(fi)« |n I converging to f
Take fx such that 6(fk, ) < QdEE(LM(f))
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Il. Ideals of formal power series Preliminary lemma

-

;

Lemma. Let / be an ideal in K[[x1,- -, x»]] and < be a local monomial
order compatible with the degree

Then LM (7) = LM (/) where | denotes the topological closure of /

N

-

.

Proof. If f € I\ {0} then 3(fi)« |n I converging to f
Take fx such that 6(fk, ) < QdEE(LM(f))

Thus deg(LM (fx — f)) > deg(LM (f))
By compatibility with the degree we get LM (fx — f) < LM (f)
This means that for all m > LM (f) we have (fx|m) = (f|m)

Hence LM (f) = LM (fx) but fx € [ therefore LM (f) € LM (/)
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Il. Ideals of formal power series Construct cofactor representation

Goal of the proof

Let / be an ideal in K[[x1, - -, xn]]
Let < a local monomial order compatible with the degree

Fix G := {s1,---, s} a standard basis of / with respect to <
Let f be in the topological closure of /

Construct (fi, -+, f;) € K[[x1, -, xa]]* such that f = fis; + - + fysp.

; J
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Il. Ideals of formal power series

Construct cofactor representation

;

Goal of the proof

Let / be an ideal in K[[x1, - -, xn]]
Let < a local monomial order compatible with the degree

Fix G := {s1,---, s} a standard basis of / with respect to <

Let f be in the topological closure of /
Construct (i, -+, f;) € K[[x1, -, xa]]* such that f = fis; + - - + fysp.

.

Strategy
Construct a sequence (ﬁ.(k))keN for each i € [1..4]
Prove that they are Cauchy

Take their limits and show that they yield a cofactor representation of f
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Il. Ideals of formal power series

Construct cofactor representation

-

Consider

If Frk =0, it's over

Fki

N
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Il. Ideals of formal power series Construct cofactor representation

4
Fr:=f— Z f;-(k)S,' 67
i=1

N

Consider

If Frk =0, it's over

Otherwise, we can eliminate my := LM (Fx) with the standard basis G by
choosing an ix € [1..4] and a g« € [x1, - -, Xa] such that

my = LM (Fk) = qk - LM (Sik)
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-

Consider ,
Fr:=f— Z f;-(k)S,' 67
i=1

If Frk =0, it's over

Otherwise, we can eliminate my := LM (Fx) with the standard basis G by
choosing an ix € [1..4] and a g« € [x1, - -, Xa] such that

my = LM (Fk) = qk - LM (Sik)

We define fi(kﬂ) = f,.(k) for all i # i and

LC (Fk)

£t (R
i i TIC(s)

N

22/33



Il. Ideals of formal power series Construct cofactor representation

-

Consider ,
Fr:=f— Z f;-(k)S,' 67
i=1

If Frk =0, it's over

Otherwise, we can eliminate my := LM (Fx) with the standard basis G by
choosing an ix € [1..4] and a g« € [x1, - -, Xa] such that

my = LM (Fk) = qk - LM (Sik)

We define fi(kﬂ) = f,.(k) for all i # i and

LC (Fk)

£t (R
i i TIC(s)

By induction hypothesis it follows that:

2
Fk+1 = Z f;(kJrl)S,' S 1
i=1

N
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Il. Ideals of formal power series Construct cofactor representation

Facts

Following from the facts that:

- we have finitely many variables
- < is compatible with the degree

- the sequence (my)« of eliminated monomials is strictly decreasing
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Il. Ideals of formal power series Construct cofactor representation

Facts

Following from the facts that:

- we have finitely many variables
- < is compatible with the degree
- the sequence (my)« of eliminated monomials is strictly decreasing

we have that the sequences (£*)) are Cauchy for any i € [1../]

Denote by (> their respective limits
Then by continuity of the metric and the facts above it follows that:

L
o= 0] =0

i=1

hence our desired result
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I11. Applications Consequence of rewriting topologically

[ Proposition. For all f,g € K[[x1,---,x,]], if f ®g then f —g €/ ]
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111. Applications

-

;

Proposition. For all f,g € K[[x1, -, xa]], if f -© g then f — g€l

-

Proof. f —® g implies the existence of a sequence fi € K][[x1, - - -, xn]] such
that f = fi and 6(fi, g) < 27 so that limy_,o0 fk = g

N

Consequence of rewriting topologically
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Proof. f —® g implies the existence of a sequence fi € K][[x1, - - -, xn]] such
that f = fi and 6(fi, g) < 27 so that limy_,o0 fk = g

By the same reasoning as polynomial reduction, f = fi implies f — fi € |
thus at the limit we obtain limy_oo(f — fi) =f — g € |

N
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111. Applications

Consequence of rewriting topologically

-

;

Proposition. For all f,g € K[[x1, -, xa]], if f -© g then f — g€l

Proof. f —® g implies the existence of a sequence fi € K][[x1, - - -, xn]] such
that f = fi and 6(fi, g) < 27 so that limy_,o0 fk = g

By the same reasoning as polynomial reduction, f = fi implies f — fi € |
thus at the limit we obtain limy_oo(f — fi) =f — g € |

But / is topologically closed, hence f — g € /

N

25/33



111. Applications Proof of the result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order
that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is
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111. Applications

Proof of the result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order

that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is

-

.

Strategy: Given

Close the diagram
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111. Applications Proof of the result

- Fix R a non-empty set of non-zero formal power series
= Fix < a local monomial order compatible with the degree

- Write — the one-step rewriting relation induced by R and <
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111. Applications Proof of the result

- Fix R a non-empty set of non-zero formal power series
= Fix < a local monomial order compatible with the degree
- Write — the one-step rewriting relation induced by R and <

Assume that — is topologically confluent ji.e. Ris a with
respect to < of the ideal / := I(R) generated by R

Let f, g, h € K[[x, - - -, xn]] such that:

PN
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111. Applications Proof of the result

Goal

Construct inductively two rewriting sequences starting from g and h re-
spectively that will be proven to be Cauchy

It will turn out that the limits are then equal and hence give a common
topological successor to g and h
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111. Applications

- By induction:
3g > g« and I S hy

Proof of the result

— B R—
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111. Applications
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3g > g« and I S hy

> If gk = hyg, then it's over!

-> From the previous proposition:

gk —h el

Proof of the result

— B R—
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111. Applications Proof of the result

- By induction:
3g > g« and I S hy

> If gk = hyg, then it's over!

— B R—
<7

ha
-> From the previous proposition:
8k —he el l
- Rewrite LM (g — hi) l l
8k hi
8k+1 ht1

29/33



111. Applications Proof of the result

Facts

- the sequences (gk)ken and (hi)ken are Cauchy

=> their limits are equal
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111. Applications Proof of the result

Facts

- the sequences (gk)ken and (hi)ken are Cauchy

=> their limits are equal

s N

SO Iimk_mo Bk = Iimk_mo hk =/

Which shows that — is

; J
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111. Applications Relation standard bases / topological confluence

Let R be a set of non-zero formal power series.

Let < be a local monomial order compatible with the degree.

Write — the relation induced by R and < and —& the topological rewriting
relation associated to it.
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111. Applications Relation standard bases / topological confluence

Let R be a set of non-zero formal power series.

Let < be a local monomial order compatible with the degree.

Write — the relation induced by R and < and —& the topological rewriting
relation associated to it.

Then the following properties are equivalent:
(i) the system is topologically confluent
) for all f € I, we have f —©0
(iii) for all f € '\ {0}, we have f reducible
(iv) for all f € I'\ {0}, we have LM (f) reducible
) R is a standard basis
)

the set of normal forms forms a canonical set of representatives for
the quotient algebra K[[x1, - - -, x»]] modulo /(R)
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IV. CONCLUSION AND PERSPECTIVES
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Conclusion and perspectives

Summary of presented notions and results:

> we introduced the basic ideas of topological rewriting theory

> we proved constructively that ideals of commutative formal power
series are topologically closed

> we showed that topological confluence is equivalent to
for formal power series

Further works:

> show that the topological rewriting relation induces convergent
rewriting chains in the context of formal power series

> adapt Newman's lemma to topological rewriting theory

> develop computational tools to study Taylor series and formal
solutions of PDEs
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Conclusion and perspectives

Summary of presented notions and results:

> we introduced the basic ideas of topological rewriting theory

> we proved constructively that ideals of commutative formal power
series are topologically closed

> we showed that topological confluence is equivalent to
for formal power series

Further works:

> show that the topological rewriting relation induces convergent
rewriting chains in the context of formal power series

> adapt Newman's lemma to topological rewriting theory

> develop computational tools to study Taylor series and formal
solutions of PDEs

THANK YOU FOR LISTENING!
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