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I. Introduction Rewriting theory

Rewriting theory

Describes sequences of computations through oriented identities
a.k.a. rewrite rules

In computer science
➔ Term rewriting

➔ β-reduction in λ-calculus

Instances

In computer algebra
➔ Polynomial reduction

➔ Involutive divisions

Abstract rewriting theory

Abstract properties common to all concrete rewriting systems:
termination, confluence, normal forms

Abstraction
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I. Introduction Discrete confluence

Abstract Rewriting System
➔ A an underlying set

➔ → a binary relation on A
We write a → b for (a, b) ∈→

Transitive reflexive closure

We write a ∗→ b to express that
a = a0 → a1 → · · · → aℓ = b

Confluence
a

b c

d

∗ ∗

∗ ∗

Example

Multivariate division with respect
to R is confluent iff R is a
Gröbner basis
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I. Introduction Why confluence is not enough

Confluence “at the limit”
In K[[x , y , z]] with the inverse deglex order such that z > y > x take

R = {z − y , z − x , y − y 2, x − x2}.

x x2 · · · xn

z

y y 2 · · · yn

The two branches will never have a common element
Hence the system is not confluent

However with the (x , y , z)-adic topology both branches converge to 0
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I. Introduction Topological abstract rewriting theory

Topological Abstract Rewriting System

➔ (X , τ) a topological space

➔ → a binary relation on X

Topological rewriting relation

Write x y if for every neighbourhood U of y there exists z ∈ U s.t. x ∗→ z

y

x

z

*

Note how x ∗→ y implies x y
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I. Introduction Topological abstract rewriting theory

Topological confluence

x

y z

w

∗ ∗

Infinitary confluence

x

y z

w

Strength of confluences

For every TARS we have:
confluence =⇒ topological confluence
infinitary confluence =⇒ topological confluence
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I. Introduction TARSs are generalisations of ARSs

Discrete rewriting system
If x y implies x ∗→ y , then we say that the TARS (X , τ, →) has
discrete rewriting.

In such a case, confluence, topological confluence and infinitary
confluence are trivially equivalent.

For instance, if τ is the discrete topology, then (X , τ, →) has
discrete rewriting.
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I. Introduction Counter-examples of 2nd converse implication

Line with two origins

X := (R × {±1}) / ∼
where (x , 1) ∼ (x , −1) if x ̸= 0

∀n ∈ N,

( 1
2n , 1

)
→
( 1

2n+1 , 1
)

(1, 1) = (1, −1)

(
1
2 , 1
)

=
(

1
2 , −1

)
(

1
4 , 1
)

=
(

1
4 , −1

)
(0, 1) ̸= (0, −1)

Cyclic relation

X := [0, 2] ⊂ R

1
2n+1

1
2n 2 − 1

2n 2 − 1
2n+1

1

1
2

3
2

1
4

7
4

1
8

15
8

0 ̸= 2
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I. Introduction Counter-examples of 2nd converse implication

Third counter-example

X := (N ∪ {∞}) × (N ∪ {∞})

where (N ∪ {∞}) is endowed with the order topology

∀n, m ∈ N, (n, m) → (n + 1, m) and (n, m) → (n, m + 1)

Note how (n, m) ∗→ (n′, m′) iff n ≤ n′ and m ≤ m′

(0, 0)

(1, 0) (0, 1)

(2, 0) (0, 2)

(∞, 0) ̸= (0, ∞)
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I. Introduction The (x1, · · ·, xn)-axic topology

Valuation

val
(
xy 2z2 + z3 + y

)
= 1

val
(
x2yz + xy 2z

)
= 4

Metric

f , g ∈ K[x1, · · ·, xn]

δ(f , g) := 1
2val(f −g)

Cauchy-completion

Cauchy sequences in K[x1, · · ·, xn]
modulo (xn)n ∼ (yn)n if and only
if limn→∞ δ(xn, yn) = 0

Formal power series

Denoted by K[[x1, · · ·, xn]]
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I. Introduction Structure of formal power series

Structure on K[[x1, · · ·, xn]]
Algebra operations on K[x1, · · ·, xn] are continuous

Hence extend naturally on K[[x1, · · ·, xn]]

Therefore K[[x1, · · ·, xn]] is a topological algebra

Formal power series as infinite linear combinations of monomials

K[[x1, · · ·, xn]] isomorphic to the dual vector space of K[x1, · · ·, xn]

Since the monoid [x1, · · ·, xn] of monomials is a basis of K[x1, · · ·, xn]

f ∈ K[[x1, · · ·, xn]] ↔ f : [x1, · · ·, xn] → K a map

Denote ⟨f |m⟩ := f (m) then f =:
∑

m∈[x1,···,xn ] ⟨f |m⟩ m
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I. Introduction Our results

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let I be an ideal of commutative formal power series.

Given any f in the topological closure of I, we can compute a cofactor
representation of f with respect to a system of generators of I.

In other words, we prove constructively that I is topologically closed.

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of commutative formal power series and < be a local
monomial order that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is infinitary confluent.
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II. IDEALS OF FORMAL POWER SERIES
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II. Ideals of formal power series Rewriting of formal power series

Local monomial orders
➔ Total order compatible with monomial multiplication

➔ Local: 1 is maximal

➔ Compatible with the degree if the total degree function on mono-
mials is decreasing.

Consequence: if < is a local order compatible with the degree then

val (f ) = deg (LM (f ))

Rewriting on formal power series: same as multivariate division on poly-
nomials but with respect to

➔ a local order < compatible with the degree

➔ a set R of non-zero formal power series
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II. Ideals of formal power series Standard bases

Standard bases

Defined syntactically like Gröbner
bases for polynomials i.e.
a subset G ⊆ I of an ideal

⟨LM (G)⟩ = LM (I)

(Note: LM is w.r.t. the local order)

Theorem [Chenavier, 2020].
R is a standard basis of the ideal it
generates for a local order < if, and
only if, the system induced by R and
< is topologically confluent.
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II. Ideals of formal power series Counter-example of 1st converse implication

Counter-example of topological confluence ⇒ confluence
Consider again, in K[[x , y , z]]

R = {z − y , z − x , y − y 2, x − x2}.

R is a standard basis because
➔ LM (R) = {x, y, z} and

➔ if f ∈ I(R) then f has no constant coefficient

Thus the system is topologically confluent

x x2 · · · xn

z 0

y y 2 · · · yn

However we saw previously that it is not confluent
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II. Ideals of formal power series Ideals are topologically closed

Ideals of formal power series are topologically closed
➔ K[[x1, · · ·, xn]]: local noetherian topological ring with respect to the

(x1, · · ·, xn)-adic topology. Therefore a Zariski ring
[Samuel, Zariski, 1975]

➔ Constructive proof providing a cofactor representation of a formal
power series in the topological closure of the ideal
[Chenavier, Cluzeau, ML, 2024]
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II. Ideals of formal power series Preliminary lemma

Lemma. Let I be an ideal in K[[x1, · · ·, xn]] and < be a local monomial
order compatible with the degree

Then LM
(
I
)

= LM (I) where I denotes the topological closure of I

Proof. If f ∈ I \ {0} then ∃(fk)k in I converging to f
Take fK such that δ(fK , f ) < 1

2deg(LM(f ))

Thus deg(LM (fK − f )) > deg(LM (f ))
By compatibility with the degree we get LM (fK − f ) < LM (f )
This means that for all m ≥ LM (f ) we have ⟨fK |m⟩ = ⟨f |m⟩

Hence LM (f ) = LM (fK ) but fK ∈ I therefore LM (f ) ∈ LM (I)
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II. Ideals of formal power series Construct cofactor representation

Goal of the proof
Let I be an ideal in K[[x1, · · ·, xn]]
Let < a local monomial order compatible with the degree

Fix G := {s1, · · ·, sℓ} a standard basis of I with respect to <

Let f be in the topological closure of I
Construct (f1, · · ·, fℓ) ∈ K[[x1, · · ·, xn]]ℓ such that f = f1s1 + · · · + fℓsℓ.

Strategy

Construct a sequence (f (k)
i )k∈N for each i ∈ J1 .. ℓK

Prove that they are Cauchy

Take their limits and show that they yield a cofactor representation of f
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II. Ideals of formal power series Construct cofactor representation

Consider

Fk := f −
ℓ∑

i=1

f (k)
i si ∈ I

If Fk = 0, it’s over

Otherwise, we can eliminate mk := LM (Fk) with the standard basis G by
choosing an ik ∈ J1 .. ℓK and a qk ∈ [x1, · · ·, xn] such that

mk := LM (Fk) = qk · LM (sik )

We define f (k+1)
i := f (k)

i for all i ̸= ik and

f (k+1)
ik := f (k)

ik + LC (Fk)
LC (sik ) qk

By induction hypothesis it follows that:

Fk+1 :=
ℓ∑

i=1

f (k+1)
i si ∈ I
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II. Ideals of formal power series Construct cofactor representation

Facts
Following from the facts that:

➔ we have finitely many variables

➔ < is compatible with the degree

➔ the sequence (mk)k of eliminated monomials is strictly decreasing

we have that the sequences (f (k)
i )k are Cauchy for any i ∈ J1 .. ℓK

Denote by f (∞)
i their respective limits

Then by continuity of the metric and the facts above it follows that:

δ

(
f −

ℓ∑
i=1

f (∞)
i si , 0

)
= 0

hence our desired result
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III. APPLICATIONS
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III. Applications Consequence of rewriting topologically

Proposition. For all f , g ∈ K[[x1, · · ·, xn]], if f g then f − g ∈ I

Proof. f g implies the existence of a sequence fk ∈ K[[x1, · · ·, xn]] such
that f ∗→ fk and δ(fk , g) < 2−k so that limk→∞ fk = g

By the same reasoning as polynomial reduction, f ∗→ fk implies f − fk ∈ I
thus at the limit we obtain limk→∞(f − fk) = f − g ∈ I

But I is topologically closed, hence f − g ∈ I
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III. Applications Proof of the result

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order
that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is infinitary confluent.

Strategy: Given
f

g h

ℓ
Close the diagram
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III. Applications Proof of the result

➔ Fix R a non-empty set of non-zero formal power series

➔ Fix < a local monomial order compatible with the degree

➔ Write → the one-step rewriting relation induced by R and <

Assume that → is topologically confluent i.e. R is a standard basis with
respect to < of the ideal I := I(R) generated by R

Let f , g , h ∈ K[[x1, · · ·, xn]] such that:

f

g h
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III. Applications Proof of the result

Goal

Construct inductively two rewriting sequences starting from g and h re-
spectively that will be proven to be Cauchy

It will turn out that the limits are then equal and hence give a common
topological successor to g and h
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III. Applications Proof of the result

f

g h

g1 h1

g2 h2

...
...

gk hk

gk+1 hk+1

➔ By induction:
∃g ∗→ gk and ∃h ∗→ hk

➔ If gk = hk , then it’s over!

➔ From the previous proposition:

gk − hk ∈ I

➔ Rewrite LM (gk − hk)
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III. Applications Proof of the result

Facts
➔ the sequences (gk)k∈N and (hk)k∈N are Cauchy

➔ their limits are equal

So limk→∞ gk = limk→∞ hk =: ℓ

f

g h

ℓ

Which shows that → is infinitary confluent
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III. Applications Relation standard bases / topological confluence

Let R be a set of non-zero formal power series.
Let < be a local monomial order compatible with the degree.
Write → the relation induced by R and < and the topological rewriting
relation associated to it.

Then the following properties are equivalent:
(i) the system is topologically confluent
(ii) for all f ∈ I, we have f 0
(iii) for all f ∈ I \ {0}, we have f reducible
(iv) for all f ∈ I \ {0}, we have LM (f ) reducible
(v) R is a standard basis
(vi) the set of normal forms forms a canonical set of representatives for

the quotient algebra K[[x1, · · ·, xn]] modulo I(R)
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IV. CONCLUSION AND PERSPECTIVES
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Conclusion and perspectives

Summary of presented notions and results:

▷ we introduced the basic ideas of topological rewriting theory

▷ we proved constructively that ideals of commutative formal power
series are topologically closed

▷ we showed that topological confluence is equivalent to infinitary
confluence for formal power series

Further works:

▷ show that the topological rewriting relation induces convergent
rewriting chains in the context of formal power series

▷ adapt Newman’s lemma to topological rewriting theory

▷ develop computational tools to study Taylor series and formal
solutions of PDEs

THANK YOU FOR LISTENING!
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