Topological closure of ideals of commutative formal power series and applications

Adya Musson-Leymarie with Cyrille Chenavier and Thomas Cluzeau

Séminaire Calcul Formel - XLIM

June 6th, 2024

I. Introduction

- Rewriting on topological structures
- ▷ Formal power series as Cauchy-completion of polynomials

II. Ideals of formal power series

- Standard bases and topological confluence
- Description Topological closure of ideals

III. Applications

- > Equivalence of confluences for formal power series
- ▷ Relation between standard bases and topological confluence

IV. Conclusion and perspectives

I. INTRODUCTION

Rewriting theory

Describes sequences of computations through oriented identities

a.k.a. rewrite rules

Transitive reflexive closure We write $a \stackrel{*}{\rightarrow} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_{\ell} = b$

Transitive reflexive closure We write $a \stackrel{*}{\rightarrow} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_{\ell} = b$

Transitive reflexive closure We write $a \xrightarrow{*} b$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_{\ell} = b$

Example

Multivariate division with respect to R is confluent iff R is a Gröbner basis

Topological Abstract Rewriting System

- → (X, τ) a topological space → → a binary relation on X

Topological Abstract Rewriting System

- \rightarrow (X, τ) a topological space
- \rightarrow \rightarrow a binary relation on X

Discrete rewriting system

If $x \rightarrow y$ implies $x \xrightarrow{*} y$, then we say that the TARS (X, τ, \rightarrow) has discrete rewriting.

Discrete rewriting system

If $x \rightarrow y$ implies $x \xrightarrow{*} y$, then we say that the TARS (X, τ, \rightarrow) has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

Discrete rewriting system

If $x \rightarrow y$ implies $x \rightarrow y$, then we say that the TARS (X, τ, \rightarrow) has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

For instance, if τ is the discrete topology, then (X, τ, \rightarrow) has discrete rewriting.

$$X:=\left(\mathbb{R} imes\{\pm1\}
ight)/\sim$$
 where $(x,1)\sim(x,-1)$ if $x
eq 0$

$$\forall n \in \mathbb{N}, \quad \left(\frac{1}{2^n}, 1\right) \to \left(\frac{1}{2^{n+1}}, 1\right)$$

Counter-examples of 2nd converse implication

$$X := (\mathbb{N} \cup \{\infty\}) \times (\mathbb{N} \cup \{\infty\})$$

where $(\mathbb{N} \cup \{\infty\})$ is endowed with the order topology

 $orall n,m\in\mathbb{N}, \hspace{0.3cm} (n,m)
ightarrow (n+1,m) \hspace{0.3cm} ext{and} \hspace{0.3cm} (n,m)
ightarrow (n,m+1)$

Note how $(n,m) \stackrel{*}{\rightarrow} (n',m')$ iff $n \leq n'$ and $m \leq m'$


```
Structure on \mathbb{K}[[x_1, \cdots, x_n]]
```

Algebra operations on $\mathbb{K}[x_1, \cdots, x_n]$ are continuous

```
Hence extend naturally on \mathbb{K}[[x_1, \cdots, x_n]]
```

Therefore $\mathbb{K}[[x_1, \cdots, x_n]]$ is a **topological algebra**

Structure on $\mathbb{K}[[x_1, \cdots, x_n]]$

Algebra operations on $\mathbb{K}[x_1, \cdots, x_n]$ are continuous

Hence **extend naturally** on $\mathbb{K}[[x_1, \dots, x_n]]$

Therefore $\mathbb{K}[[x_1, \dots, x_n]]$ is a **topological algebra**

Formal power series as infinite linear combinations of monomials $\mathbb{K}[[x_1, \dots, x_n]]$ isomorphic to the **dual vector space** of $\mathbb{K}[x_1, \dots, x_n]$ Since the monoid $[x_1, \dots, x_n]$ of monomials is a basis of $\mathbb{K}[x_1, \dots, x_n]$ $f \in \mathbb{K}[[x_1, \dots, x_n]] \quad \leftrightarrow \quad f : [x_1, \dots, x_n] \to \mathbb{K}$ a map Denote $\langle f | m \rangle := f(m)$ then $f =: \sum_{m \in [x_1, \dots, x_n]} \langle f | m \rangle m$

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let I be an ideal of commutative formal power series.

Given any f in the topological closure of I, we can compute a cofactor representation of f with respect to a system of generators of I.

In other words, we prove constructively that *I* is **topologically closed**.

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of commutative formal power series and < be a local monomial order that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if and only if it is infinitary confluent.

II. IDEALS OF FORMAL POWER SERIES

→ Total order **compatible** with monomial multiplication

- \rightarrow Total order **compatible** with monomial multiplication
- \rightarrow Local: 1 is maximal

- \rightarrow Total order **compatible** with monomial multiplication
- \rightarrow Local: 1 is maximal
- → Compatible with the degree if the total degree function on monomials is decreasing.

- \rightarrow Total order **compatible** with monomial multiplication
- \rightarrow Local: 1 is maximal
- → Compatible with the degree if the total degree function on monomials is decreasing.

Consequence: if < is a local order compatible with the degree then

 $\operatorname{val}(f) = \operatorname{deg}(\operatorname{LM}(f))$

Rewriting on formal power series: same as multivariate division on polynomials but with respect to

- \rightarrow a local order < compatible with the degree
- \rightarrow a set *R* of non-zero formal power series

Standard bases

```
Defined syntactically like Gröbner
bases for polynomials i.e.
a subset G \subseteq I of an ideal
```

```
\langle \mathsf{LM}(G) \rangle = \mathsf{LM}(I)
```

(Note: LM is w.r.t. the local order)

Standard bases

Defined syntactically like **Gröbner bases** for polynomials *i.e.* a subset $G \subset I$ of an ideal

 $\langle LM(G) \rangle = LM(I)$

(Note: LM is w.r.t. the local order)

Theorem [Chenavier, 2020]. *R* is a **standard basis** of the ideal it generates for a **local** order < if, and only if, the system induced by *R* and < is **topologically confluent**. Counter-example of topological confluence \Rightarrow confluence Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

Counter-example of topological confluence \Rightarrow confluence Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

R is a standard basis because

- → LM (R) = {x, y, z} and
- → if $f \in I(R)$ then f has no constant coefficient

Counter-example of topological confluence \Rightarrow confluence Consider again, in $\mathbb{K}[[x, y, z]]$

$$R = \{z - y, z - x, y - y^2, x - x^2\}.$$

R is a standard basis because

→ LM (R) = {x, y, z} and

→ if $f \in I(R)$ then f has no constant coefficient

Thus the system is topologically confluent

However we saw previously that it is not confluent

Ideals of formal power series are topologically closed

→ $\mathbb{K}[[x_1, \dots, x_n]]$: local noetherian topological ring with respect to the (x_1, \dots, x_n) -adic topology. Therefore a **Zariski ring** [Samuel, Zariski, 1975]

Ideals of formal power series are topologically closed

- → K[[x₁, · · ·, x_n]]: local noetherian topological ring with respect to the (x₁, · · ·, x_n)-adic topology. Therefore a Zariski ring [Samuel, Zariski, 1975]
- → Constructive proof providing a cofactor representation of a formal power series in the topological closure of the ideal [Chenavier, Cluzeau, ML, 2024]

Then LM $(\overline{I}) =$ LM (I) where \overline{I} denotes the **topological closure of** I

Then LM $(\overline{I}) = LM(I)$ where \overline{I} denotes the **topological closure of** I

Proof. If $f \in \overline{I} \setminus \{0\}$ then $\exists (f_k)_k$ in I converging to fTake f_K such that $\delta(f_K, f) < \frac{1}{2^{\deg(\operatorname{LM}(f))}}$

Then LM $(\overline{I}) = LM(I)$ where \overline{I} denotes the **topological closure of** I

Proof. If $f \in \overline{I} \setminus \{0\}$ then $\exists (f_k)_k$ in *I* converging to *f* Take f_K such that $\delta(f_K, f) < \frac{1}{2^{\deg(\operatorname{LM}(f))}}$ Thus $\deg(\operatorname{LM}(f_K - f)) > \deg(\operatorname{LM}(f))$ By compatibility with the degree we get $\operatorname{LM}(f_K - f) < \operatorname{LM}(f)$

This means that for all $m \ge LM(f)$ we have $\langle f_K | m \rangle = \langle f | m \rangle$

Then LM $(\overline{I}) =$ LM (I) where \overline{I} denotes the **topological closure of** I

Proof. If $f \in \overline{I} \setminus \{0\}$ then $\exists (f_k)_k$ in *I* converging to *f* Take f_K such that $\delta(f_K, f) < \frac{1}{2^{\deg(\operatorname{LM}(f))}}$ Thus $\deg(\operatorname{LM}(f_K - f)) > \deg(\operatorname{LM}(f))$ By compatibility with the degree we get $\operatorname{LM}(f_K - f) < \operatorname{LM}(f)$ This means that for all $m \ge \operatorname{LM}(f)$ we have $\langle f_K | m \rangle = \langle f | m \rangle$

Hence LM $(f) = LM(f_{\mathcal{K}})$ but $f_{\mathcal{K}} \in I$ therefore LM $(f) \in LM(I)$

Goal of the proof

Let *I* be an ideal in $\mathbb{K}[[x_1, \dots, x_n]]$ Let < a local monomial order compatible with the degree Fix $G := \{s_1, \dots, s_\ell\}$ a standard basis of *I* with respect to < Let *f* be in the topological closure of *I* Construct $(f_1, \dots, f_\ell) \in \mathbb{K}[[x_1, \dots, x_n]]^\ell$ such that $f = f_1 s_1 + \dots + f_\ell s_\ell$.

Goal of the proof Let *I* be an ideal in $\mathbb{K}[[x_1, \dots, x_n]]$ Let < a local monomial order compatible with the degree Fix $G := \{s_1, \dots, s_\ell\}$ a standard basis of *I* with respect to < Let *f* be in the topological closure of *I* Construct $(f_1, \dots, f_\ell) \in \mathbb{K}[[x_1, \dots, x_n]]^\ell$ such that $f = f_1 s_1 + \dots + f_\ell s_\ell$.

Strategy

Construct a sequence $(f_i^{(k)})_{k\in\mathbb{N}}$ for each $i\in\llbracket 1\,..\,\ell\rrbracket$

Prove that they are Cauchy

Take their limits and show that they yield a cofactor representation of f

Construct cofactor representation

Consider

$$F_k := f - \sum_{i=1}^{\ell} f_i^{(k)} s_i \in \overline{I}$$

If $F_k = 0$, it's over

Consider

$$m{F}_k := f - \sum_{i=1}^\ell f_i^{(k)} m{s}_i \in ar{I}$$

If $F_k = 0$, it's over

Otherwise, we can eliminate $m_k := \text{LM}(F_k)$ with the standard basis G by choosing an $i_k \in [\![1 \dots \ell]\!]$ and a $q_k \in [x_1, \dots, x_n]$ such that

 $m_k := \mathsf{LM}(F_k) = q_k \cdot \mathsf{LM}(s_{i_k})$

Consider

$$m{F}_k := f - \sum_{i=1}^\ell f_i^{(k)} m{s}_i \in ar{I}$$

If $F_k = 0$, it's over

Otherwise, we can eliminate $m_k := \text{LM}(F_k)$ with the standard basis G by choosing an $i_k \in [\![1 ... \ell]\!]$ and a $q_k \in [x_1, \dots, x_n]$ such that

$$m_k := \mathsf{LM}\left(F_k
ight) = q_k \cdot \mathsf{LM}\left(s_{i_k}
ight)$$

We define $f_i^{(k+1)} := f_i^{(k)}$ for all $i \neq i_k$ and

$$f_{i_k}^{(k+1)} := f_{i_k}^{(k)} + rac{\mathsf{LC}\left(\mathcal{F}_k
ight)}{\mathsf{LC}\left(s_{i_k}
ight)} q_k$$

Consider

$$F_k := f - \sum_{i=1}^{\ell} f_i^{(k)} s_i \in \overline{I}$$

If $F_k = 0$, it's over

Otherwise, we can eliminate $m_k := \text{LM}(F_k)$ with the standard basis G by choosing an $i_k \in [\![1 ... \ell]\!]$ and a $q_k \in [x_1, \dots, x_n]$ such that

$$m_k := \mathsf{LM}\left(F_k
ight) = q_k \cdot \mathsf{LM}\left(s_{i_k}
ight)$$

We define $f_i^{(k+1)} := f_i^{(k)}$ for all $i \neq i_k$ and

$$f_{i_k}^{(k+1)} := f_{i_k}^{(k)} + rac{\mathsf{LC}\left(\mathcal{F}_k
ight)}{\mathsf{LC}\left(s_{i_k}
ight)} q_k$$

By induction hypothesis it follows that:

$$F_{k+1} := \sum_{i=1}^{\ell} f_i^{(k+1)} s_i \in \overline{I}$$

Facts

Following from the facts that:

- → we have finitely many variables
- \rightarrow < is compatible with the degree
- \rightarrow the sequence $(m_k)_k$ of eliminated monomials is strictly decreasing

Facts

Following from the facts that:

- → we have finitely many variables
- \rightarrow < is compatible with the degree

→ the sequence $(m_k)_k$ of eliminated monomials is strictly decreasing we have that the sequences $(f_i^{(k)})_k$ are Cauchy for any $i \in [1 ... \ell]$

Facts

Following from the facts that:

- → we have finitely many variables
- \rightarrow < is compatible with the degree

→ the sequence $(m_k)_k$ of eliminated monomials is strictly decreasing we have that the sequences $(f_i^{(k)})_k$ are Cauchy for any $i \in [\![1 ... \ell]\!]$

Denote by $f_i^{(\infty)}$ their respective limits Then by continuity of the metric and the facts above it follows that:

$$\delta\left(f-\sum_{i=1}^{\ell}f_{i}^{(\infty)}s_{i},0\right)=0$$

hence our desired result

III. APPLICATIONS

Proof. $f \oplus g$ implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \dots, x_n]]$ such that $f \stackrel{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

Proof. $f \oplus g$ implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \cdots, x_n]]$ such that $f \stackrel{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

By the same reasoning as polynomial reduction, $f \xrightarrow{*} f_k$ implies $f - f_k \in I$ thus at the limit we obtain $\lim_{k\to\infty} (f - f_k) = f - g \in \overline{I}$

Proof. $f \oplus g$ implies the existence of a sequence $f_k \in \mathbb{K}[[x_1, \cdots, x_n]]$ such that $f \stackrel{*}{\to} f_k$ and $\delta(f_k, g) < 2^{-k}$ so that $\lim_{k \to \infty} f_k = g$

By the same reasoning as polynomial reduction, $f \xrightarrow{*} f_k$ implies $f - f_k \in I$ thus at the limit we obtain $\lim_{k\to\infty} (f - f_k) = f - g \in \overline{I}$

But I is topologically closed, hence $f - g \in I$

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if and only if it is infinitary confluent.

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if and only if it is infinitary confluent.

Theorem. [Chenavier, Cluzeau, ML, 2024]

Let R be a set of formal power series and < be a local monomial order that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if and only if it is infinitary confluent.

- \rightarrow Fix < a local monomial order compatible with the degree
- \rightarrow Write \rightarrow the one-step rewriting relation induced by R and <

- \rightarrow Fix < a local monomial order compatible with the degree
- \rightarrow Write \rightarrow the one-step rewriting relation induced by R and <

Assume that \rightarrow is topologically confluent *i.e.* R is a standard basis with respect to < of the ideal I := I(R) generated by R

Goal

Construct inductively **two rewriting sequences** starting from g and h respectively that will be proven to be **Cauchy**

It will turn out that the limits are then equal and hence give a **common** topological successor to g and h

- → By induction: $\exists g \xrightarrow{*} g_k$ and $\exists h \xrightarrow{*} h_k$
- → If $g_k = h_k$, then it's over!

- → By induction: $\exists g \xrightarrow{*} g_k$ and $\exists h \xrightarrow{*} h_k$
- → If $g_k = h_k$, then it's over!
- → From the previous proposition:

$$g_k - h_k \in I$$

Ø

h

 h_1

 h_2

 h_k

 h_{k+1}

- → By induction: $\exists g \xrightarrow{*} g_k$ and $\exists h \xrightarrow{*} h_k$
- → If $g_k = h_k$, then it's over!
- → From the previous proposition:

 $g_k - h_k \in I$

→ Rewrite LM $(g_k - h_k)$

Facts

→ the sequences $(g_k)_{k \in \mathbb{N}}$ and $(h_k)_{k \in \mathbb{N}}$ are Cauchy

 \rightarrow their limits are equal

Facts

→ the sequences $(g_k)_{k \in \mathbb{N}}$ and $(h_k)_{k \in \mathbb{N}}$ are Cauchy

 \rightarrow their limits are equal

So $\lim_{k\to\infty} g_k = \lim_{k\to\infty} h_k =: \ell$

Which shows that \rightarrow is infinitary confluent

Let *R* be a set of non-zero formal power series. Let < be a local monomial order compatible with the degree. Write \rightarrow the relation induced by *R* and < and $-\oplus$ the topological rewriting

relation associated to it.

```
Let R be a set of non-zero formal power series.
Let < be a local monomial order compatible with the degree.
Write \rightarrow the relation induced by R and < and -\oplus the topological rewriting
relation associated to it.
Then the following properties are equivalent:
 (i) the system is topologically confluent
(ii) for all f \in I, we have f \rightarrow 0
(iii) for all f \in I \setminus \{0\}, we have f reducible
(iv) for all f \in I \setminus \{0\}, we have LM (f) reducible
(v) R is a standard basis
(vi) the set of normal forms forms a canonical set of representatives for
     the quotient algebra \mathbb{K}[[x_1, \dots, x_n]] modulo I(R)
```

IV. CONCLUSION AND PERSPECTIVES

Conclusion and perspectives

- ▷ we introduced the basic ideas of topological rewriting theory
- we proved constructively that ideals of commutative formal power series are topologically closed
- we showed that topological confluence is equivalent to infinitary confluence for formal power series

Further works:

- $\triangleright\,$ show that the topological rewriting relation induces convergent rewriting chains in the context of formal power series
- ▷ adapt Newman's lemma to topological rewriting theory
- develop computational tools to study Taylor series and formal solutions of PDEs

Conclusion and perspectives

- ▷ we introduced the basic ideas of topological rewriting theory
- we proved constructively that ideals of commutative formal power series are topologically closed
- we showed that topological confluence is equivalent to infinitary confluence for formal power series

Further works:

- $\triangleright\,$ show that the topological rewriting relation induces convergent rewriting chains in the context of formal power series
- ▷ adapt Newman's lemma to topological rewriting theory
- develop computational tools to study Taylor series and formal solutions of PDEs

THANK YOU FOR LISTENING!