Topological closure of ideals of commutative formal power series and applications

Adya Musson-Leymarie with Cyrille Chenavier and Thomas Cluzeau

Séminaire Calcul Formel - XLIM
June 6th, 2024

I. Introduction

\triangleright Rewriting on topological structures
\triangleright Formal power series as Cauchy-completion of polynomials

II. Ideals of formal power series

\triangleright Standard bases and topological confluence
\triangleright Topological closure of ideals
III. Applications
\triangleright Equivalence of confluences for formal power series
\triangleright Relation between standard bases and topological confluence
IV. Conclusion and perspectives

I. INTRODUCTION

```
    Rewriting theory
Describes sequences of computations through oriented identities
a.k.a. rewrite rules
```


Rewriting theory
 Describes sequences of computations through oriented identities a.k.a. rewrite rules

In computer science
\rightarrow Term rewriting
$\rightarrow \beta$-reduction in λ-calculus
Instances

Rewriting theory
 Describes sequences of computations through oriented identities a.k.a. rewrite rules

In computer science
\rightarrow Term rewriting
$\rightarrow \beta$-reduction in λ-calculus

Instances

In computer algebra
\rightarrow Polynomial reduction
\rightarrow Involutive divisions

Rewriting theory

Describes sequences of computations through oriented identities a.k.a. rewrite rules

Abstract Rewriting System

$\rightarrow A$ an underlying set
$\rightarrow \rightarrow$ a binary relation on A
We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Abstract Rewriting System

$\rightarrow A$ an underlying set
$\rightarrow \rightarrow$ a binary relation on A
We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Transitive reflexive closure

We write $a \xrightarrow{*} b$ to express that $a=a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{\ell}=b$

Abstract Rewriting System

$\rightarrow A$ an underlying set
$\rightarrow \rightarrow$ a binary relation on A
We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Transitive reflexive closure

We write $a \xrightarrow{*} b$ to express that $a=a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{\ell}=b$

Abstract Rewriting System

$\rightarrow A$ an underlying set
$\rightarrow \rightarrow$ a binary relation on A
We write $a \rightarrow b$ for $(a, b) \in \rightarrow$

Transitive reflexive closure

We write $a \xrightarrow{*} b$ to express that $a=a_{0} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{\ell}=b$

Example

Multivariate division with respect to R is confluent iff R is a Gröbner basis

Confluence "at the limit"

$\ln \mathbb{K}[[x, y, z]]$ with the inverse deglex order such that $z>y>x$ take

$$
R=\left\{\mathrm{z}-y, \quad \mathrm{z}-x, \quad \mathrm{y}-y^{2}, \quad \mathrm{x}-x^{2}\right\}
$$

Confluence "at the limit"

In $\mathbb{K}[[x, y, z]]$ with the inverse deglex order such that $z>y>x$ take

$$
R=\left\{\mathrm{z}-y, \quad \mathrm{z}-x, \quad \mathrm{y}-y^{2}, \quad \mathrm{x}-x^{2}\right\}
$$

The two branches will never have a common element Hence the system is not confluent

However with the (x, y, z)-adic topology both branches converge to 0

Topological Abstract Rewriting System

$\rightarrow(X, \tau)$ a topological space
$\rightarrow \rightarrow$ a binary relation on X

Topological Abstract Rewriting System
$\rightarrow(X, \tau)$ a topological space
$\rightarrow \rightarrow$ a binary relation on X

Topological rewriting relation

Write $x \oplus y$ if for every neighbourhood U of y there exists $z \in U$ s.t. $x \xrightarrow{*} z$

Note how $x \xrightarrow{*} y$ implies $x \bigoplus y$

Topological confluence

Topological confluence

Infinitary confluence

Topological confluence

Infinitary confluence

Strength of confluences

For every TARS we have:
confluence \Longrightarrow topological confluence infinitary confluence \Longrightarrow topological confluence

Discrete rewriting system

If $x \odot y$ implies $x \xrightarrow{*} y$, then we say that the $\operatorname{TARS}(X, \tau, \rightarrow)$ has discrete rewriting.

Discrete rewriting system

If $x \oplus y$ implies $x \xrightarrow{*} y$, then we say that the $\operatorname{TARS}(X, \tau, \rightarrow)$ has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

Discrete rewriting system

If $x \oplus y$ implies $x \xrightarrow{*} y$, then we say that the $\operatorname{TARS}(X, \tau, \rightarrow)$ has discrete rewriting.

In such a case, confluence, topological confluence and infinitary confluence are trivially equivalent.

For instance, if τ is the discrete topology, then (X, τ, \rightarrow) has discrete rewriting.

Line with two origins

$$
X:=(\mathbb{R} \times\{ \pm 1\}) / \sim
$$

where $(x, 1) \sim(x,-1)$ if $x \neq 0$

$$
\forall n \in \mathbb{N}, \quad\left(\frac{1}{2^{n}}, 1\right) \rightarrow\left(\frac{1}{2^{n+1}}, 1\right)
$$

Line with two origins

$$
X:=(\mathbb{R} \times\{ \pm 1\}) / \sim
$$

where $(x, 1) \sim(x,-1)$ if $x \neq 0$

$$
\forall n \in \mathbb{N}, \quad\left(\frac{1}{2^{n}}, 1\right) \rightarrow\left(\frac{1}{2^{n+1}}, 1\right)
$$

$$
(1,1)=(1,-1)
$$

$$
\left(\frac{1}{2}, 1\right)=\left(\frac{1}{2},-1\right)
$$

$(0,1)$

Line with two origins

$$
X:=(\mathbb{R} \times\{ \pm 1\}) / \sim
$$

where $(x, 1) \sim(x,-1)$ if $x \neq 0$

$$
\forall n \in \mathbb{N}, \quad\left(\frac{1}{2^{n}}, 1\right) \rightarrow\left(\frac{1}{2^{n+1}}, 1\right)
$$

$$
(1,1)=(1,-1)
$$

$$
\left(\frac{1}{2}, 1\right)=\left(\frac{1}{2},-1\right)
$$

$(0,1)$
\neq
$(0,-1)$

Cyclic relation

$$
X:=[0,2] \subset \mathbb{R}
$$

$$
\frac{1}{2^{n+1}} \longleftarrow \frac{1}{2^{n}} \quad 2-\frac{1}{2^{n}} \longleftarrow 2-\frac{1}{2^{n+1}}
$$

Line with two origins

$$
X:=(\mathbb{R} \times\{ \pm 1\}) / \sim
$$

where $(x, 1) \sim(x,-1)$ if $x \neq 0$

$$
\forall n \in \mathbb{N}, \quad\left(\frac{1}{2^{n}}, 1\right) \rightarrow\left(\frac{1}{2^{n+1}}, 1\right)
$$

$$
(1,1)=(1,-1)
$$

$$
\left(\frac{1}{2}, 1\right)=\left(\frac{1}{2},-1\right)
$$

$(0,1)$
\neq
$(0,-1)$

Cyclic relation

$X:=[0,2] \subset \mathbb{R}$

$$
\frac{1}{2^{n+1}} \longleftarrow \frac{1}{2^{n}} \quad 2-\frac{1}{2^{n}} \longleftarrow 2-\frac{1}{2^{n+1}}
$$

Third counter-example

$$
X:=(\mathbb{N} \cup\{\infty\}) \times(\mathbb{N} \cup\{\infty\})
$$

where $(\mathbb{N} \cup\{\infty\})$ is endowed with the order topology

Third counter-example

$$
X:=(\mathbb{N} \cup\{\infty\}) \times(\mathbb{N} \cup\{\infty\})
$$

where $(\mathbb{N} \cup\{\infty\})$ is endowed with the order topology

$$
\forall n, m \in \mathbb{N}, \quad(n, m) \rightarrow(n+1, m) \quad \text { and } \quad(n, m) \rightarrow(n, m+1)
$$

Note how $(n, m) \xrightarrow{*}\left(n^{\prime}, m^{\prime}\right)$ iff $n \leq n^{\prime}$ and $m \leq m^{\prime}$

Third counter-example

$$
X:=(\mathbb{N} \cup\{\infty\}) \times(\mathbb{N} \cup\{\infty\})
$$

where $(\mathbb{N} \cup\{\infty\})$ is endowed with the order topology

$$
\forall n, m \in \mathbb{N}, \quad(n, m) \rightarrow(n+1, m) \quad \text { and } \quad(n, m) \rightarrow(n, m+1)
$$

Note how $(n, m) \xrightarrow{*}\left(n^{\prime}, m^{\prime}\right)$ iff $n \leq n^{\prime}$ and $m \leq m^{\prime}$

$$
\begin{gathered}
\text { Valuation } \\
\qquad \begin{array}{r}
\text { val }\left(x y^{2} z^{2}+z^{3}+y\right)=1 \\
\text { val }\left(x^{2} y z+x y^{2} z\right)=4
\end{array}
\end{gathered}
$$

Metric

$$
\begin{aligned}
& f, g \in \mathbb{K}\left[x_{1}, \cdots, x_{n}\right] \\
& \delta(f, g):=\frac{1}{2^{\operatorname{val}(f-g)}}
\end{aligned}
$$

> Valuation $\begin{gathered}\text { val }\left(x y^{2} z^{2}+z^{3}+y\right)=1 \\ \operatorname{val}\left(x^{2} y z+x y^{2} z\right)=4\end{gathered}$

Cauchy sequences in $\mathbb{K}\left[x_{1}, \cdots, x_{n}\right]$ modulo $\left(x_{n}\right)_{n} \sim\left(y_{n}\right)_{n}$ if and only if $\lim _{n \rightarrow \infty} \delta\left(x_{n}, y_{n}\right)=0$

> Valuation $\begin{array}{r}\text { val }\left(x y^{2} z^{2}+z^{3}+y\right)=1 \\ \text { val }\left(x^{2} y z+x y^{2} z\right)=4\end{array}$

Formal power series
Denoted by $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$

$$
\begin{gathered}
\text { Metric } \\
f, g \in \mathbb{K}\left[x_{1}, \cdots, x_{n}\right] \\
\delta(f, g):=\frac{1}{2^{\text {val }(f-g)}}
\end{gathered}
$$

Cauchy-completion

Cauchy sequences in $\mathbb{K}\left[x_{1}, \cdots, x_{n}\right]$ modulo $\left(x_{n}\right)_{n} \sim\left(y_{n}\right)_{n}$ if and only if $\lim _{n \rightarrow \infty} \delta\left(x_{n}, y_{n}\right)=0$

Structure on $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$

Algebra operations on $\mathbb{K}\left[x_{1}, \cdots, x_{n}\right]$ are continuous
Hence extend naturally on $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$
Therefore $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ is a topological algebra

Structure on $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$

Algebra operations on $\mathbb{K}\left[x_{1}, \cdots, x_{n}\right]$ are continuous
Hence extend naturally on $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$
Therefore $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ is a topological algebra

Formal power series as infinite linear combinations of monomials

$\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ isomorphic to the dual vector space of $\mathbb{K}\left[x_{1}, \cdots, x_{n}\right]$
Since the monoid $\left[x_{1}, \cdots, x_{n}\right]$ of monomials is a basis of $\mathbb{K}\left[x_{1}, \cdots, x_{n}\right]$

$$
f \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right] \quad \leftrightarrow \quad f:\left[x_{1}, \cdots, x_{n}\right] \rightarrow \mathbb{K} \text { a map }
$$

Denote $\langle f \mid m\rangle:=f(m)$ then $f=: \sum_{m \in\left[x_{1}, \cdots, x_{n}\right]}\langle f \mid m\rangle m$

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let I be an ideal of commutative formal power series.
Given any f in the topological closure of I, we can compute a cofactor representation of f with respect to a system of generators of I.

In other words, we prove constructively that I is topologically closed.

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let R be a set of commutative formal power series and $<$ be a local monomial order that is compatible with the degree.

The rewriting system induced by R and $<$ is topologically confluent if and only if it is infinitary confluent.

II. IDEALS OF FORMAL POWER SERIES

Local monomial orders

\rightarrow Total order compatible with monomial multiplication

Local monomial orders

\rightarrow Total order compatible with monomial multiplication
\rightarrow Local: 1 is maximal

Local monomial orders

\rightarrow Total order compatible with monomial multiplication
\rightarrow Local: 1 is maximal
\rightarrow Compatible with the degree if the total degree function on monomials is decreasing.

Local monomial orders

\rightarrow Total order compatible with monomial multiplication
\rightarrow Local: 1 is maximal
\rightarrow Compatible with the degree if the total degree function on monomials is decreasing.
Consequence: if $<$ is a local order compatible with the degree then

$$
\operatorname{val}(f)=\operatorname{deg}(\mathrm{LM}(f))
$$

Local monomial orders

\rightarrow Total order compatible with monomial multiplication
\rightarrow Local: 1 is maximal
\rightarrow Compatible with the degree if the total degree function on monomials is decreasing.
Consequence: if $<$ is a local order compatible with the degree then

$$
\operatorname{val}(f)=\operatorname{deg}(\mathrm{LM}(f))
$$

Rewriting on formal power series: same as multivariate division on polynomials but with respect to
\rightarrow a local order < compatible with the degree
\rightarrow a set R of non-zero formal power series

Standard bases

Defined syntactically like Gröbner bases for polynomials i.e.
a subset $G \subseteq I$ of an ideal

$$
\langle\mathrm{LM}(G)\rangle=\mathrm{LM}(I)
$$

(Note: LM is w.r.t. the local order)

Standard bases

Defined syntactically like Gröbner bases for polynomials i.e. a subset $G \subseteq I$ of an ideal

$$
\langle\mathrm{LM}(G)\rangle=\mathrm{LM}(I)
$$

(Note: LM is w.r.t. the local order)

Theorem [Chenavier, 2020]. R is a standard basis of the ideal it generates for a local order $<\mathrm{if}$, and only if, the system induced by R and $<$ is topologically confluent.

Counter-example of topological confluence \Rightarrow confluence

Consider again, in $\mathbb{K}[[x, y, z]]$

$$
R=\left\{z-y, \quad z-x, \quad y-y^{2}, \quad x-x^{2}\right\}
$$

Counter-example of topological confluence \Rightarrow confluence

Consider again, in $\mathbb{K}[[x, y, z]]$

$$
R=\left\{z-y, \quad z-x, \quad y-y^{2}, \quad x-x^{2}\right\}
$$

R is a standard basis because
$\rightarrow \mathrm{LM}(R)=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and
\rightarrow if $f \in I(R)$ then f has no constant coefficient

Counter-example of topological confluence \Rightarrow confluence

Consider again, in $\mathbb{K}[[x, y, z]]$

$$
R=\left\{z-y, \quad z-x, \quad y-y^{2}, \quad x-x^{2}\right\}
$$

R is a standard basis because
$\rightarrow \mathrm{LM}(R)=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ and
\rightarrow if $f \in I(R)$ then f has no constant coefficient
Thus the system is topologically confluent

However we saw previously that it is not confluent

Ideals of formal power series are topologically closed
$\rightarrow \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$: local noetherian topological ring with respect to the (x_{1}, \cdots, x_{n})-adic topology. Therefore a Zariski ring [Samuel, Zariski, 1975]

Ideals of formal power series are topologically closed
$\rightarrow \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$: local noetherian topological ring with respect to the (x_{1}, \cdots, x_{n})-adic topology. Therefore a Zariski ring [Samuel, Zariski, 1975]
\rightarrow Constructive proof providing a cofactor representation of a formal power series in the topological closure of the ideal [Chenavier, Cluzeau, ML, 2024]

Lemma. Let I be an ideal in $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ and $<$ be a local monomial order compatible with the degree

Then LM $(\bar{I})=\mathrm{LM}(I)$ where \bar{I} denotes the topological closure of I

Lemma. Let I be an ideal in $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ and $<$ be a local monomial order compatible with the degree
Then LM $(\bar{I})=\mathrm{LM}(I)$ where \bar{I} denotes the topological closure of I

Proof. If $f \in \bar{I} \backslash\{0\}$ then $\exists\left(f_{k}\right)_{k}$ in $/$ converging to f
Take f_{K} such that $\delta\left(f_{K}, f\right)<\frac{1}{2^{\operatorname{deg}(L M(f))}}$

Lemma. Let I be an ideal in $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ and $<$ be a local monomial order compatible with the degree
Then LM $(\bar{I})=\mathrm{LM}(I)$ where \bar{I} denotes the topological closure of I

Proof. If $f \in \bar{I} \backslash\{0\}$ then $\exists\left(f_{k}\right)_{k}$ in $/$ converging to f
Take f_{K} such that $\delta\left(f_{K}, f\right)<\frac{1}{2^{\operatorname{deg}(L M(f))}}$
Thus $\operatorname{deg}\left(\operatorname{LM}\left(f_{K}-f\right)\right)>\operatorname{deg}(\operatorname{LM}(f))$
By compatibility with the degree we get $\mathrm{LM}\left(f_{K}-f\right)<\mathrm{LM}(f)$
This means that for all $m \geq \mathrm{LM}(f)$ we have $\left\langle f_{K} \mid m\right\rangle=\langle f \mid m\rangle$

Lemma. Let I be an ideal in $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ and $<$ be a local monomial order compatible with the degree
Then LM $(\bar{I})=\mathrm{LM}(I)$ where \bar{I} denotes the topological closure of I

Proof. If $f \in \bar{I} \backslash\{0\}$ then $\exists\left(f_{k}\right)_{k}$ in I converging to f
Take f_{K} such that $\delta\left(f_{K}, f\right)<\frac{1}{2^{\operatorname{deg}(L M(f))}}$
Thus $\operatorname{deg}\left(\operatorname{LM}\left(f_{K}-f\right)\right)>\operatorname{deg}(\operatorname{LM}(f))$
By compatibility with the degree we get $\operatorname{LM}\left(f_{K}-f\right)<\operatorname{LM}(f)$
This means that for all $m \geq \mathrm{LM}(f)$ we have $\left\langle f_{K} \mid m\right\rangle=\langle f \mid m\rangle$
Hence LM $(f)=\operatorname{LM}\left(f_{K}\right)$ but $f_{K} \in I$ therefore $\operatorname{LM}(f) \in \operatorname{LM}(I)$

Goal of the proof

Let I be an ideal in $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$
Let $<$ a local monomial order compatible with the degree
Fix $G:=\left\{s_{1}, \cdots, s_{\ell}\right\}$ a standard basis of I with respect to $<$
Let f be in the topological closure of I
Construct $\left(f_{1}, \cdots, f_{\ell}\right) \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]^{\ell}$ such that $f=f_{1} s_{1}+\cdots+f_{\ell} s_{\ell}$.

Goal of the proof

Let I be an ideal in $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$
Let $<$ a local monomial order compatible with the degree
Fix $G:=\left\{s_{1}, \cdots, s_{\ell}\right\}$ a standard basis of I with respect to $<$
Let f be in the topological closure of I
Construct $\left(f_{1}, \cdots, f_{\ell}\right) \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]^{\ell}$ such that $f=f_{1} s_{1}+\cdots+f_{\ell} s_{\ell}$.

Strategy

Construct a sequence $\left(f_{i}^{(k)}\right)_{k \in \mathbb{N}}$ for each $i \in \llbracket 1 . . \ell \rrbracket$
Prove that they are Cauchy
Take their limits and show that they yield a cofactor representation of f

Consider

$$
F_{k}:=f-\sum_{i=1}^{\ell} f_{i}^{(k)} s_{i} \in \bar{l}
$$

If $F_{k}=0$, it's over

Consider

$$
F_{k}:=f-\sum_{i=1}^{\ell} f_{i}^{(k)} s_{i} \in \bar{l}
$$

If $F_{k}=0$, it's over
Otherwise, we can eliminate $m_{k}:=\mathrm{LM}\left(F_{k}\right)$ with the standard basis G by choosing an $i_{k} \in \llbracket 1 . . \ell \rrbracket$ and a $q_{k} \in\left[x_{1}, \cdots, x_{n}\right]$ such that

$$
m_{k}:=\mathrm{LM}\left(F_{k}\right)=q_{k} \cdot \mathrm{LM}\left(s_{i_{k}}\right)
$$

Consider

$$
F_{k}:=f-\sum_{i=1}^{\ell} f_{i}^{(k)} s_{i} \in \bar{I}
$$

If $F_{k}=0$, it's over
Otherwise, we can eliminate $m_{k}:=\mathrm{LM}\left(F_{k}\right)$ with the standard basis G by choosing an $i_{k} \in \llbracket 1 . . \ell \rrbracket$ and a $q_{k} \in\left[x_{1}, \cdots, x_{n}\right]$ such that

$$
m_{k}:=\mathrm{LM}\left(F_{k}\right)=q_{k} \cdot \mathrm{LM}\left(s_{i_{k}}\right)
$$

We define $f_{i}^{(k+1)}:=f_{i}^{(k)}$ for all $i \neq i_{k}$ and

$$
f_{i_{k}}^{(k+1)}:=f_{i_{k}}^{(k)}+\frac{\operatorname{LC}\left(F_{k}\right)}{\operatorname{LC}\left(s_{i_{k}}\right)} q_{k}
$$

Consider

$$
F_{k}:=f-\sum_{i=1}^{\ell} f_{i}^{(k)} s_{i} \in \bar{I}
$$

If $F_{k}=0$, it's over
Otherwise, we can eliminate $m_{k}:=\mathrm{LM}\left(F_{k}\right)$ with the standard basis G by choosing an $i_{k} \in \llbracket 1 . . \ell \rrbracket$ and a $q_{k} \in\left[x_{1}, \cdots, x_{n}\right]$ such that

$$
m_{k}:=\mathrm{LM}\left(F_{k}\right)=q_{k} \cdot \mathrm{LM}\left(s_{i_{k}}\right)
$$

We define $f_{i}^{(k+1)}:=f_{i}^{(k)}$ for all $i \neq i_{k}$ and

$$
f_{i_{k}}^{(k+1)}:=f_{i_{k}}^{(k)}+\frac{\operatorname{LC}\left(F_{k}\right)}{\operatorname{LC}\left(s_{i_{k}}\right)} q_{k}
$$

By induction hypothesis it follows that:

$$
F_{k+1}:=\sum_{i=1}^{\ell} f_{i}^{(k+1)} s_{i} \in \bar{I}
$$

Facts

Following from the facts that:
\rightarrow we have finitely many variables
$\rightarrow<$ is compatible with the degree
\rightarrow the sequence $\left(m_{k}\right)_{k}$ of eliminated monomials is strictly decreasing

Facts

Following from the facts that:
\rightarrow we have finitely many variables
$\rightarrow<$ is compatible with the degree
\rightarrow the sequence $\left(m_{k}\right)_{k}$ of eliminated monomials is strictly decreasing we have that the sequences $\left(f_{i}^{(k)}\right)_{k}$ are Cauchy for any $i \in \llbracket 1 . . \ell \rrbracket$

Facts

Following from the facts that:
\rightarrow we have finitely many variables
$\rightarrow<$ is compatible with the degree
\rightarrow the sequence $\left(m_{k}\right)_{k}$ of eliminated monomials is strictly decreasing we have that the sequences $\left(f_{i}^{(k)}\right)_{k}$ are Cauchy for any $i \in \llbracket 1 . . \ell \rrbracket$

Denote by $f_{i}^{(\infty)}$ their respective limits
Then by continuity of the metric and the facts above it follows that:

$$
\delta\left(f-\sum_{i=1}^{\ell} f_{i}^{(\infty)} s_{i}, 0\right)=0
$$

hence our desired result

III. APPLICATIONS

Proposition. For all $f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$, if $f \otimes g$ then $f-g \in I$

Proposition. For all $f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$, if $f-g$ then $f-g \in I$

Proof. $f \oplus g$ implies the existence of a sequence $f_{k} \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ such that $f \xrightarrow{*} f_{k}$ and $\delta\left(f_{k}, g\right)<2^{-k}$ so that $\lim _{k \rightarrow \infty} f_{k}=g$

Proposition. For all $f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$, if $f \odot g$ then $f-g \in I$

Proof. $f \oplus g$ implies the existence of a sequence $f_{k} \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ such that $f \xrightarrow{*} f_{k}$ and $\delta\left(f_{k}, g\right)<2^{-k}$ so that $\lim _{k \rightarrow \infty} f_{k}=g$
By the same reasoning as polynomial reduction, $f \xrightarrow{*} f_{k}$ implies $f-f_{k} \in I$ thus at the limit we obtain $\lim _{k \rightarrow \infty}\left(f-f_{k}\right)=f-g \in \bar{I}$

Proposition. For all $f, g \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$, if $f \oplus g$ then $f-g \in I$

Proof. $f \oplus g$ implies the existence of a sequence $f_{k} \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ such that $f \xrightarrow{*} f_{k}$ and $\delta\left(f_{k}, g\right)<2^{-k}$ so that $\lim _{k \rightarrow \infty} f_{k}=g$

By the same reasoning as polynomial reduction, $f \xrightarrow{*} f_{k}$ implies $f-f_{k} \in I$ thus at the limit we obtain $\lim _{k \rightarrow \infty}\left(f-f_{k}\right)=f-g \in \bar{I}$

But I is topologically closed, hence $f-g \in I$

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let R be a set of formal power series and $<$ be a local monomial order that is compatible with the degree.

The rewriting system induced by R and $<$ is topologically confluent if and only if it is infinitary confluent.

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let R be a set of formal power series and $<$ be a local monomial order that is compatible with the degree.

The rewriting system induced by R and $<$ is topologically confluent if and only if it is infinitary confluent.

Strategy: Given

Theorem. [Chenavier, Cluzeau, ML, 2024]
Let R be a set of formal power series and $<$ be a local monomial order that is compatible with the degree.

The rewriting system induced by R and $<$ is topologically confluent if and only if it is infinitary confluent.

Strategy: Given

Close the diagram
\rightarrow Fix R a non-empty set of non-zero formal power series
\rightarrow Fix $<$ a local monomial order compatible with the degree
\rightarrow Write \rightarrow the one-step rewriting relation induced by R and $<$
\rightarrow Fix R a non-empty set of non-zero formal power series
\rightarrow Fix $<$ a local monomial order compatible with the degree
\rightarrow Write \rightarrow the one-step rewriting relation induced by R and $<$ Assume that \rightarrow is topologically confluent i.e. R is a standard basis with respect to $<$ of the ideal $I:=I(R)$ generated by R
\rightarrow Fix R a non-empty set of non-zero formal power series
\rightarrow Fix $<$ a local monomial order compatible with the degree
\rightarrow Write \rightarrow the one-step rewriting relation induced by R and $<$ Assume that \rightarrow is topologically confluent i.e. R is a standard basis with respect to $<$ of the ideal $I:=I(R)$ generated by R

Let $f, g, h \in \mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ such that:

Goal

Construct inductively two rewriting sequences starting from g and h respectively that will be proven to be Cauchy

It will turn out that the limits are then equal and hence give a common topological successor to g and h
\rightarrow By induction: $\exists g \xrightarrow{*} g_{k}$ and $\exists h \xrightarrow{*} h_{k}$

\rightarrow By induction:
$\exists g \xrightarrow{*} g_{k}$ and $\exists h \xrightarrow{*} h_{k}$
\rightarrow If $g_{k}=h_{k}$, then it's over!

\rightarrow By induction: $\exists g \xrightarrow{*} g_{k}$ and $\exists h \xrightarrow{*} h_{k}$
\rightarrow If $g_{k}=h_{k}$, then it's over!
\rightarrow From the previous proposition:

$$
g_{k}-h_{k} \in I
$$

\rightarrow By induction:
$\exists g \xrightarrow{*} g_{k}$ and $\exists h \xrightarrow{*} h_{k}$
\rightarrow If $g_{k}=h_{k}$, then it's over!
\rightarrow From the previous proposition:

$$
g_{k}-h_{k} \in I
$$

\rightarrow Rewrite LM $\left(g_{k}-h_{k}\right)$

Facts

\rightarrow the sequences $\left(g_{k}\right)_{k \in \mathbb{N}}$ and $\left(h_{k}\right)_{k \in \mathbb{N}}$ are Cauchy
\rightarrow their limits are equal

Facts

\rightarrow the sequences $\left(g_{k}\right)_{k \in \mathbb{N}}$ and $\left(h_{k}\right)_{k \in \mathbb{N}}$ are Cauchy
\rightarrow their limits are equal

So $\lim _{k \rightarrow \infty} g_{k}=\lim _{k \rightarrow \infty} h_{k}=: \ell$

Which shows that \rightarrow is infinitary confluent

Let R be a set of non-zero formal power series.
Let $<$ be a local monomial order compatible with the degree.
Write \rightarrow the relation induced by R and $<$ and \rightarrow the topological rewriting relation associated to it.

Let R be a set of non-zero formal power series.
Let $<$ be a local monomial order compatible with the degree.
Write \rightarrow the relation induced by R and $<$ and \rightarrow the topological rewriting relation associated to it.

Then the following properties are equivalent:
(i) the system is topologically confluent
(ii) for all $f \in I$, we have $f \rightarrow 0$
(iii) for all $f \in I \backslash\{0\}$, we have f reducible
(iv) for all $f \in I \backslash\{0\}$, we have $\mathrm{LM}(f)$ reducible
(v) R is a standard basis
(vi) the set of normal forms forms a canonical set of representatives for the quotient algebra $\mathbb{K}\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ modulo $I(R)$

IV. CONCLUSION AND PERSPECTIVES

Conclusion and perspectives

Summary of presented notions and results:
\triangleright we introduced the basic ideas of topological rewriting theory
\triangleright we proved constructively that ideals of commutative formal power series are topologically closed
\triangleright we showed that topological confluence is equivalent to infinitary confluence for formal power series

Further works:
\triangleright show that the topological rewriting relation induces convergent rewriting chains in the context of formal power series
\triangleright adapt Newman's lemma to topological rewriting theory
\triangleright develop computational tools to study Taylor series and formal solutions of PDEs

Conclusion and perspectives

Summary of presented notions and results:
\triangleright we introduced the basic ideas of topological rewriting theory
\triangleright we proved constructively that ideals of commutative formal power series are topologically closed
\triangleright we showed that topological confluence is equivalent to infinitary confluence for formal power series

Further works:
\triangleright show that the topological rewriting relation induces convergent rewriting chains in the context of formal power series
\triangleright adapt Newman's lemma to topological rewriting theory
\triangleright develop computational tools to study Taylor series and formal solutions of PDEs

THANK YOU FOR LISTENING!

