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1 Introduction

Following the preliminary work done in [1] and in our latest journal submis-
sion [2], we investigate the computational aspects on algebras of formal power
series through the lens of standard bases and topological rewriting theory. Just
as polynomial reduction strikes in similarity with first-order term rewriting, the
study of rewriting on formal power series is analogous in many ways to infinitary
term rewriting as well as infinitary λ-calculus. However, the confluence proper-
ties naturally arising in each field are syntactically different: namely topological
confluence and infinitary confluence. In [2] we provide examples demonstrating
that, in the setting of arbitrary topological rewriting systems, infinitary conflu-
ence is in general stronger than topological confluence, but we prove that in the
context of formal power series, the two notions are actually equivalent. Many
questions are still left unanswered; we present some of them here and provide
partial results.

2 Topological rewriting systems

Definition 1 (Topological rewriting system). A topological rewriting sys-
tem consists of a topological space (X, τ) and a binary relation → on X.

We denote by ⋆→ the reflexive transitive closure of → and by the topolog-
ical closure of ⋆→ for the product topology τXdis× τ , where τXdis means the discrete
topology on X.

We say that x rewrites finitely into y if x ⋆→ y and that x rewrites topologically
into y if x y. We have the following characterisation of the so-called topological
rewriting relation : for all x, y ∈ X, we have x y if and only if, for all
neighbourhood U of y for the topology τ , there exists z ∈ U such that x

⋆→ z.
We recall the definition of normal forms and extend the meaning to our

setting. We say that n ∈ X is a normal form if there exists no x ∈ X such that
we have n → x. Let a ∈ X and n ∈ X a normal form. We say that n is a discrete
(resp. topological) normal form of a if a ⋆→ n (resp. a n).

We now give definitions of three notions of confluence of interest to us.
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Definition 2 (Confluences). Let (X, τ,→) be a topological rewriting system.

(i) The system is (finitary) confluent if, for all a that rewrites finitely into b
and c, there exists d such that b and c rewrite finitely into d.

(ii) The system is topologically confluent if, for all a that rewrites finitely into b
and c, there exists d such that b and c rewrite topologically into d.

(iii) The system is infinitary confluent if, for all a that rewrites topologically
into b and c, there exists d such that b and c rewrite topologically into d.

Remark 1 (Diagrams of confluences).
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From the definitions of the relations, we see that x y follows from x
⋆→ y.

Therefore, we deduce that both finitary and infinitary confluences imply topo-
logical confluence. In the next section, we will give a counter-example for the
statement “topological confluence implies finitary confluence”. To give a counter-
example of the claim “topological confluence implies infinitary confluence”, we
must first notice that infinitary confluence is syntactically equivalent to the dia-
mond property for the classical abstract rewriting system (X, ). But, it can
be shown by induction that the diamond property of entails the finitary
confluence of which in turn means that the unique normal form property is
verified. Hence we have the following result.

Proposition 1. Let (X, τ,→) be a topological rewriting system. Assume that
the system is infinitary confluent. Then, let a ∈ X and n, n′ ∈ X be topological
normal forms of a, we have n = n′.

We now are able to provide our first counter-example.

Example 1 (Contradicting “topological confluence ⇒ infinitary confluence”). We
present [2, Example 4.1.4]. Consider X := (N ∪ {∞})2 endowed with τ the
product topology of the order topology and the relation → defined by:

∀n,m ∈ N, (n,m) → (n+ 1,m) and (n,m) → (n,m+ 1).

This relation is finitary confluent and hence topologically confluent.
However, notice how, for n ∈ N such that n ≥ 1:

(∞, 0) (n, 0) · · · (1, 0) (0, 0) (0, 1) · · · (0, n) (0,∞)

Therefore, (∞, 0) and (0,∞) are distinct topological normal forms of (0, 0).
Hence, the system cannot be infinitary confluent.
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3 Rewriting on formal power series

We denote by K[[x1, · · ·, xn]] the topological algebra of formal power series in n
indeterminates over a field K. We consider the opposite order < of the deglex
induced by an arbitrary total order on {x1, · · ·, xn}. Other semigroup orders
would work as long as 1 is maximal and the degree function is decreasing. For
any non-zero formal power series f , we denote by lm(f) (resp. by lc(f)) the
largest monomial for < appearing in f called the leading monomial (resp. the
coefficient of the leading monomial called the leading coefficient) of f and finally
we write the remainder r(f) := lc(f) lm(f) − f . The (x1, · · ·, xn)-adic topology
denoted τδ is actually induced by the following metric on K[[x1, · · ·, xn]]:

δ(f, g) :=
1

2deg(lm(f−g))
.

Fix R a set of non-zero formal power series and write I the ideal it generates
in K[[x1, · · ·, xn]]. Define the reduction relation on formal power series just as in
polynomial reduction where we replace a multiple m·lm(s) of a leading monomial
of a rule s ∈ R with non-zero coefficient by the the remainder 1

lc(s)m× r(s).
There exists a definition in the context of formal power series that is syntac-

tically analoguous to Gröbner bases called standard bases originally introduced
in [4]. (See [3] for a modern introduction). The set R of non-zero formal power
series is called a standard basis of the ideal I if it is finite and for all f ∈ I there
exist s ∈ R and a monomial m such that lm(f) = m · lm(s).

We recall [1, Theorem 4.1.3] as follows: the set R is a standard basis of I if,
and only if, the system (K[[x1, · · ·, xn]], τδ,→) is topologically confluent.

We can now provide a counter-example to a previous converse implication.

Example 2 (Contradicting “topological confluence ⇒ finitary confluence”).
We present [1, Example 4.1.4]. Consider R := {z−x, z−y, x−x2, y−y2} and

< the inverse deglex order such that z > y > x. We see that R is a standard basis,
hence the system is topologically confluent. However, consider the branching:

x x2 x3 · · · xn

z

y y2 y3 · · · yn

The two branches will never have a common element in a finite amount of
steps. Hence the system is not finitary confluent.

Using the fact (known from [5] and proved constructively in [2]) that ideals
of formal power series are topologically closed, we obtain the following result:

Theorem 1 ([2, Theorem 4.2.2]). The system (K[[x1, · · ·, xn]], τδ,→) is in-
finitary confluent if and only if it is topologically confluent.
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4 Perspectives

The definition of the relation does not explicitly guarantee the existence of
rewriting chains. In fact, here is an example showing that it is possible for a to
rewrite topologically into b but no rewriting chains of even infinite length exist
from a to b.

Example 3. Consider, in K[[x, y]], the system induced by R := {x− yn|n ≥ 1}
and the inverse deglex order such that x > y. Then we have x 0 but no
rewriting chains (i.e. ⋆→-increasing sequences) starting from x converges to 0.

It still remains to prove or disprove the following conjecture.

Conjecture 1. For the theory of rewriting on formal power series, if the set of
rules R is finite, then f g implies the existence of a rewriting chain starting
from f converging to g. An equivalent formulation is as follows: if R is finite,
then for all f ̸= g such that f g, there exists a direct successor f ′ of f such
that f → f ′ g.

We proved the particular case where f has only finitely many direct successors
(for instance, if it is a polynomial), as well as the case where R is a standard
basis and g is a normal form.

If that conjecture is true, then this actually yields an alternative proof for
the fact that, if R is finite, topological confluence of the system induced by R
is equivalent to R being a standard basis. Moreover, it would also prove that
the transitive closure of the symmetric closure of is exactly the congruence
relation modulo the ideal I generated by R.
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