Topological rewriting systems: confluences and chains

Adya Musson-Leymarie https://adyaml.com

with **Cyrille Chenavier** and **Thomas Cluzeau**

CASC - Computer Algebra for Scientific Computing

September 2nd, 2024

Rewriting theory

Describes sequences of **computations** through **oriented identities**

a.k.a. **rewrite rules**

Transitive reflexive closure We write $\textit{a} \overset{*}{\rightarrow} \textit{b}$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_\ell = b$

Transitive reflexive closure We write $\textit{a}\ \stackrel{*}{\rightarrow}\ \textit{b}$ to express that $a = a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_\ell = b$

Example

Multivariate division with respect to R is **confluent** iff R is a **Gröbner basis**

Topological Abstract Rewriting System

- ➔ (X*, τ*) a **topological space**
- \rightarrow \rightarrow a binary relation on X

Topological Abstract Rewriting System

- ➔ (X*, τ*) a **topological space**
- $\rightarrow \rightarrow$ a binary relation on X

Theorem [Chenavier 2020].

Standard basis ⇔ **topological confluence** where **standard bases** are to formal power series as **Gröbner bases** are to polynomials

Theorem [Chenavier 2020].

Standard basis ⇔ **topological confluence** where **standard bases** are to formal power series as **Gröbner bases** are to polynomials

Of interest in computer science: **infinitary** *λ/*Σ**-terms**

Theorem [Chenavier 2020].

Standard basis ⇔ **topological confluence** where **standard bases** are to formal power series as **Gröbner bases** are to polynomials

Of interest in computer science: **infinitary** *λ/*Σ**-terms**

It implies the **Church-Rosser property** of the classical system $(X, -\bigcirc)$ Under certain topological separation conditions, it implies **unicity of normal forms** reached by $-\oplus$

Strength of confluences

For every TARS we have: **confluence** =⇒ **topological confluence infinitary confluence** =⇒ **topological confluence**

Strength of confluences

For every TARS we have: **confluence** =⇒ **topological confluence infinitary confluence** =⇒ **topological confluence**

Discrete rewriting system

If $x \rightarrow y$ implies $x \stackrel{*}{\rightarrow} y$, then we say that the TARS (X, τ, \rightarrow) has **discrete rewriting**

In such a case, **confluence**, **topological confluence** and **infinitary confluence** are **trivially equivalent**

For instance, if τ is the **discrete topology**, then (X, τ, \rightarrow) has **discrete rewriting**

Counter-example of topological confluence ⇒ **confluence** Consider again, in K[[x*,* y*,* z]]

$$
R = \{z - y, \quad z - x, \quad y - y^2, \quad x - x^2\}.
$$

Counter-example of topological confluence ⇒ **confluence** Consider again, in K[[x*,* y*,* z]]

$$
R = \{z - y, \quad z - x, \quad y - y^2, \quad x - x^2\}.
$$

R is a **standard basis** because

- \rightarrow LM $(R) = \{x, y, z\}$ and
- \rightarrow if $f \in I(R)$ then f has no constant coefficient

Counter-example of topological confluence ⇒ **confluence** Consider again, in K[[x*,* y*,* z]]

$$
R = \{z - y, \quad z - x, \quad y - y^2, \quad x - x^2\}.
$$

R is a **standard basis** because

 \rightarrow LM $(R) = \{x, y, z\}$ and

 \rightarrow if $f \in I(R)$ then f has no constant coefficient

Thus the system is **topologically confluent**

However we saw previously that it is **not confluent**

Counter-example of topological confluence ⇒ **infinitary confluence**

```
X := (\mathbb{N} \cup \{\infty\}) \times (\mathbb{N} \cup \{\infty\})
```
where $(N \cup \{\infty\})$ is endowed with the order topology

Counter-example of topological confluence ⇒ **infinitary confluence**

$$
X := (\mathbb{N} \cup \{\infty\}) \times (\mathbb{N} \cup \{\infty\})
$$

where $(N \cup \{\infty\})$ is endowed with the order topology

 $\forall n, m \in \mathbb{N}, \quad (n, m) \rightarrow (n + 1, m) \text{ and } (n, m) \rightarrow (n, m + 1)$

Note how $(n, m) \stackrel{*}{\rightarrow} (n', m')$ iff $n \leq n'$ and $m \leq m'$

Theorem [Chenavier, Cluzeau, ML, 2024] using [Chenavier, 2020].

Let R be a set of formal power series and *<* be a local monomial order that is compatible with the degree.

Theorem [Chenavier, Cluzeau, ML, 2024] using [Chenavier, 2020].

Let R be a set of formal power series and *<* be a local monomial order that is compatible with the degree.

The rewriting system induced by R and *<* is **topologically confluent** if and only if it is **infinitary confluent**.

Alternatively

Find conditions on topological rewriting systems, in particular verified by formal power series, that are sufficient to prove

topological confluence equivalent to **infinitary confluent**

and then prove that it implies

topological confluence equivalent to **standard bases** for commutative formal power series

(See Notes on topological rewriting theory at [adyaml.com/research\)](https://adyaml.com/research)

[II. Equivalence of confluences](#page-27-0) [Metric on formal power series](#page-27-0)

Metric

\n
$$
f, g \in \mathbb{K}[[x_1, \cdots, x_n]]
$$
\n
$$
\delta(f, g) := \frac{1}{2^{\text{val}(f-g)}}
$$

Example of a convergent sequence

In $\mathbb{K}[[x, y, z]]$ the sequence (f_n) of powers of a variable (say x) converges: $\lim_{n\to\infty} f_n = 0$ because val $(x^n - 0) \longrightarrow_{n\to\infty} \infty$

In $\mathbb{K}[[x, y, z]]$ the sequence (f_n) of powers of a variable (say x) converges: $\lim_{n\to\infty} f_n = 0$ because val $(x^n - 0) \longrightarrow_{n\to\infty} \infty$ Hence in the example of the introduction:

Monomial orders

- → Total order compatible with monomial multiplication
- ➔ **Global** if 1 is minimal → **Gröbner bases**
- ➔ **Local** if 1 is maximal → **Standard bases**
- ➔ **Compatible with the degree** if the degree function on monomials is non-increasing (resp. non-decreasing) for a **local** (resp. **global**) order

Consequence: if *<* is a **local** order **compatible with the degree** then

val $(f) =$ deg $(LM(f))$

Ideals of formal power series are topologically closed

→ K[[x_1, \dots, x_n]]: local noetherian topological ring with respect to the (x1*,* · · ·*,* xn)-adic topology. Therefore a **Zariski ring [Samuel, Zariski, 1975]**

Ideals of formal power series are topologically closed

- \rightarrow K[[x_1, \dots, x_n]]: local noetherian topological ring with respect to the (x1*,* · · ·*,* xn)-adic topology. Therefore a **Zariski ring [Samuel, Zariski, 1975]**
- ➔ Constructive proof providing a **cofactor representation** of a formal power series in the topological closure of the ideal **[Chenavier, Cluzeau, ML, 2024]**

Theorem [Chenavier, Cluzeau, ML, 2024].

Let R be a set of formal power series and *<* be a **local** monomial order that is **compatible with the degree**.

Theorem [Chenavier, Cluzeau, ML, 2024].

Let R be a set of formal power series and *<* be a **local** monomial order that is **compatible with the degree**.

Theorem [Chenavier, Cluzeau, ML, 2024].

Let R be a set of formal power series and *<* be a **local** monomial order that is **compatible with the degree**.

- ➔ Fix *<* a **local** monomial order **compatible with the degree**
- ➔ Write → the one-step rewriting relation induced by R and *<*

- ➔ Fix *<* a **local** monomial order **compatible with the degree**
- ➔ Write → the one-step rewriting relation induced by R and *<*

Assume that \rightarrow is **topologically confluent** *i.e.* R is a **standard basis** with respect to $<$ of the ideal $I := I(R)$ generated by R

Goal

Construct inductively **two rewriting sequences** starting from g and h respectively that will be proven to be **Cauchy**

It will turn out that the limits are then equal and hence give a **common topological successor** to g and h

- \rightarrow By induction: $\exists g \stackrel{*}{\rightarrow} g_k$ and $\exists h \stackrel{*}{\rightarrow} h_k$
- \rightarrow If $g_k = h_k$, then it's over!

- \rightarrow By induction: $\exists g \stackrel{*}{\rightarrow} g_k$ and $\exists h \stackrel{*}{\rightarrow} h_k$
- \rightarrow If $g_k = h_k$, then it's over!
- → Otherwise:

$$
0\neq g_k-h_k\in I
$$

- \rightarrow By induction: $\exists g \stackrel{*}{\rightarrow} g_k$ and $\exists h \stackrel{*}{\rightarrow} h_k$
- \rightarrow If $g_k = h_k$, then it's over!
- → Otherwise:

$$
0\neq g_k-h_k\in I
$$

→ Rewrite LM $(g_k - h_k)$

Facts

 \rightarrow the sequences $(g_k)_{k \in \mathbb{N}}$ and $(h_k)_{k \in \mathbb{N}}$ are **Cauchy**

➔ their limits are **equal**

Facts

 \rightarrow the sequences $(g_k)_{k\in\mathbb{N}}$ and $(h_k)_{k\in\mathbb{N}}$ are **Cauchy**

➔ their limits are **equal**

So $\lim_{k\to\infty} g_k = \lim_{k\to\infty} h_k =: \ell$

Which shows that → is **infinitary confluent**

Conjecture (Chains).

Consider commutative formal power series with a **finite number of rules**. If $f \rightarrow \infty$, with α a normal form, then there exists a (possibly infinite) rewriting chain from f to *α*

Conjecture (Chains).

Consider commutative formal power series with a **finite number of rules**. If $f \rightarrow \infty$, with α a normal form, then there exists a (possibly infinite) rewriting chain from f to *α*

Has been proven when rules form a **standard basis** or when f is a series with only finitely many multiple of leading monomials of rules (in particular, if f **is a polynomial**)

THANK YOU FOR LISTENING!