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I. Introduction Rewriting theory

Rewriting theory

Describes sequences of computations through oriented identities
a.k.a. rewrite rules

In computer science
➔ Term rewriting

➔ β-reduction in λ-calculus

Instances

In computer algebra
➔ Polynomial reduction

➔ Involutive divisions

Abstract rewriting theory

Abstract properties common to all concrete rewriting systems:
termination, confluence, normal forms

Abstraction
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I. Introduction Discrete confluence

Abstract Rewriting System
➔ A an underlying set

➔ → a binary relation on A
We write a → b for (a, b) ∈→

Transitive reflexive closure

We write a ∗→ b to express that
a = a0 → a1 → · · · → aℓ = b

Confluence
a

b c

d

∗ ∗

∗ ∗

Example

Multivariate division with respect
to R is confluent iff R is a
Gröbner basis
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I. Introduction Why confluence is not enough

Confluence “at the limit”
In K[[x , y , z]] with the inverse deglex order such that z > y > x take

R = {z − y , z − x , y − y 2, x − x2}.

x x2 · · · xn

z

y y 2 · · · yn

The two branches will never have a common element
Hence the system is not confluent

However with the (x , y , z)-adic topology both branches converge to 0
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I. Introduction Topological abstract rewriting theory

Topological Abstract Rewriting System

➔ (X , τ) a topological space

➔ → a binary relation on X

Topological rewriting relation

Write x y if for every neighbourhood U of y there exists z ∈ U s.t. x ∗→ z

y

x

z

*

Note how x ∗→ y implies x y
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I. Introduction Topological abstract rewriting theory

Topological confluence

x

y z

w

∗ ∗

Theorem [Chenavier 2020].
Standard basis ⇔ topological confluence
where standard bases are to formal power
series as Gröbner bases are to polynomials

Infinitary confluence

x

y z

w

Of interest in computer science:
infinitary λ/Σ-terms

It implies the Church-Rosser property of
the classical system (X , )
Under certain topological separation con-
ditions, it implies unicity of normal
forms reached by
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I. Introduction TARSs are generalisations of ARSs

Strength of confluences
For every TARS we have:
confluence =⇒ topological confluence
infinitary confluence =⇒ topological confluence

Discrete rewriting system

If x y implies x ∗→ y , then we say that the TARS (X , τ, →) has
discrete rewriting

In such a case, confluence, topological confluence and infinitary
confluence are trivially equivalent

For instance, if τ is the discrete topology, then (X , τ, →) has
discrete rewriting
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I. Introduction Counter-example of 1st converse implication

Counter-example of topological confluence ⇒ confluence
Consider again, in K[[x , y , z]]

R = {z − y , z − x , y − y 2, x − x2}.

R is a standard basis because
➔ LM (R) = {x, y, z} and

➔ if f ∈ I(R) then f has no constant coefficient

Thus the system is topologically confluent

x x2 · · · xn

z 0

y y 2 · · · yn

However we saw previously that it is not confluent
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I. Introduction Counter-example of 2nd converse implication

Counter-example of topological confluence ⇒ infinitary confluence

X := (N ∪ {∞}) × (N ∪ {∞})

where (N ∪ {∞}) is endowed with the order topology

∀n, m ∈ N, (n, m) → (n + 1, m) and (n, m) → (n, m + 1)

Note how (n, m) ∗→ (n′, m′) iff n ≤ n′ and m ≤ m′

(0, 0)

(1, 0) (0, 1)

(2, 0) (0, 2)

(∞, 0) ̸= (0, ∞)
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I. Introduction Our result

Theorem [Chenavier, Cluzeau, ML, 2024] using [Chenavier, 2020].

Let R be a set of formal power series and < be a local monomial order
that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is infinitary confluent.

Alternatively
Find conditions on topological rewriting systems, in particular verified by
formal power series, that are sufficient to prove

topological confluence equivalent to infinitary confluent

and then prove that it implies

topological confluence equivalent to standard bases
for commutative formal power series

(See Notes on topological rewriting theory at adyaml.com/research)
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II. Equivalence of confluences Metric on formal power series

Valuation

val
(
xy 2z2 + z3 + y

)
= 1

val
(
x2yz + xy 2z

)
= 4

Metric

f , g ∈ K[[x1, · · ·, xn]]

δ(f , g) := 1
2val(f −g)

Example of a convergent sequence

In K[[x , y , z]] the sequence (fn) of powers of a variable (say x) converges:
limn→∞ fn = 0 because val (xn − 0) −→

n→∞
∞

Hence in the example of the introduction:

x x2 · · · xn

z 0

y y 2 · · · yn

11 / 22



II. Equivalence of confluences Metric on formal power series

Valuation

val
(
xy 2z2 + z3 + y

)
= 1

val
(
x2yz + xy 2z

)
= 4

Metric

f , g ∈ K[[x1, · · ·, xn]]

δ(f , g) := 1
2val(f −g)

Example of a convergent sequence

In K[[x , y , z]] the sequence (fn) of powers of a variable (say x) converges:
limn→∞ fn = 0 because val (xn − 0) −→

n→∞
∞

Hence in the example of the introduction:

x x2 · · · xn

z 0

y y 2 · · · yn

11 / 22



II. Equivalence of confluences Metric on formal power series

Valuation

val
(
xy 2z2 + z3 + y

)
= 1

val
(
x2yz + xy 2z

)
= 4

Metric

f , g ∈ K[[x1, · · ·, xn]]

δ(f , g) := 1
2val(f −g)

Example of a convergent sequence

In K[[x , y , z]] the sequence (fn) of powers of a variable (say x) converges:
limn→∞ fn = 0 because val (xn − 0) −→

n→∞
∞

Hence in the example of the introduction:

x x2 · · · xn

z 0

y y 2 · · · yn

11 / 22



II. Equivalence of confluences Local monomial orders

Monomial orders
➔ Total order compatible with monomial multiplication

➔ Global if 1 is minimal → Gröbner bases

➔ Local if 1 is maximal → Standard bases

➔ Compatible with the degree if the degree function on monomials is
non-increasing (resp. non-decreasing) for a local (resp. global) order

Consequence: if < is a local order compatible with the degree then

val (f ) = deg (LM (f ))

12 / 22



II. Equivalence of confluences Ideals are topologically closed

Ideals of formal power series are topologically closed
➔ K[[x1, · · ·, xn]]: local noetherian topological ring with respect to the

(x1, · · ·, xn)-adic topology. Therefore a Zariski ring
[Samuel, Zariski, 1975]

➔ Constructive proof providing a cofactor representation of a formal
power series in the topological closure of the ideal
[Chenavier, Cluzeau, ML, 2024]
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II. Equivalence of confluences Proof of the result

Theorem [Chenavier, Cluzeau, ML, 2024].

Let R be a set of formal power series and < be a local monomial order
that is compatible with the degree.

The rewriting system induced by R and < is topologically confluent if
and only if it is infinitary confluent.

Strategy: Given
f

g h

ℓ
Close the diagram
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II. Equivalence of confluences Proof of the result

➔ Fix R a non-empty set of non-zero formal power series

➔ Fix < a local monomial order compatible with the degree

➔ Write → the one-step rewriting relation induced by R and <

Assume that → is topologically confluent i.e. R is a standard basis with
respect to < of the ideal I := I(R) generated by R

Let f , g , h ∈ K[[x1, · · ·, xn]] such that:

f

g h
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II. Equivalence of confluences Proof of the result

Goal

Construct inductively two rewriting sequences starting from g and h re-
spectively that will be proven to be Cauchy

It will turn out that the limits are then equal and hence give a common
topological successor to g and h

16 / 22



II. Equivalence of confluences Proof of the result

f

g h

g1 h1

g2 h2

...
...

gk hk

gk+1 hk+1

= =

= =

= =

= =

➔ By induction:
∃g ∗→ gk and ∃h ∗→ hk

➔ If gk = hk , then it’s over!

➔ Otherwise:

0 ̸= gk − hk ∈ I

➔ Rewrite LM (gk − hk)

17 / 22



II. Equivalence of confluences Proof of the result

f

g h

g1 h1

g2 h2

...
...

gk hk

gk+1 hk+1

= =

= =

= =

= =

➔ By induction:
∃g ∗→ gk and ∃h ∗→ hk

➔ If gk = hk , then it’s over!

➔ Otherwise:

0 ̸= gk − hk ∈ I

➔ Rewrite LM (gk − hk)

17 / 22



II. Equivalence of confluences Proof of the result

f

g h

g1 h1

g2 h2

...
...

gk hk

gk+1 hk+1

= =

= =

= =

= =

➔ By induction:
∃g ∗→ gk and ∃h ∗→ hk

➔ If gk = hk , then it’s over!

➔ Otherwise:

0 ̸= gk − hk ∈ I

➔ Rewrite LM (gk − hk)

17 / 22



II. Equivalence of confluences Proof of the result

f

g h

g1 h1

g2 h2

...
...

gk hk

gk+1 hk+1

= =

= =

= =

= =

= =

➔ By induction:
∃g ∗→ gk and ∃h ∗→ hk

➔ If gk = hk , then it’s over!

➔ Otherwise:

0 ̸= gk − hk ∈ I

➔ Rewrite LM (gk − hk)

17 / 22



II. Equivalence of confluences Proof of the result

Facts
➔ the sequences (gk)k∈N and (hk)k∈N are Cauchy

➔ their limits are equal

So limk→∞ gk = limk→∞ hk =: ℓ

f

g h

ℓ

Which shows that → is infinitary confluent
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III. Chains conjecture The problem

Problem. a b does not always imply a → a1 → a2 → a3 → · · · −→
∞

b

Consider in K[[x , y ]] the rules R := {x −y k |k ≥ 1} with local deglex x > y
x

0

y k1

y k2

NO
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III. Chains conjecture The conjecture

Conjecture (Chains).
Consider commutative formal power series with a finite number of rules.
If f α, with α a normal form, then there exists a (possibly infinite)
rewriting chain from f to α

Has been proven when rules form a standard basis or when f is a series
with only finitely many multiple of leading monomials of rules (in particular,
if f is a polynomial)
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Conclusion and perspectives

Summary of presented notions and results:

▷ we introduced different confluence properties for topological
rewriting systems

▷ we provided counter-examples for converse strength implications

▷ we showed that topological confluence is equivalent to infinitary
confluence for formal power series thanks to the topological clo-
sure of ideals

Further works:

▷ prove or disprove the chains conjecture

▷ find a generalised Newman’s lemma in the topological setting

▷ develop computational tools to manipulate Taylor series to ulti-
mately investigate formal solutions of PDEs

THANK YOU FOR LISTENING!
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