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1 Topological preliminaries

Let (X, τ) be a topological space.

1.1 Separation axioms

Definition 1.1 : Basic separation notions

1. Two subsets of X are said to be topologically indistinguishable if they have exactly
the same neighbourhoods.

2. Two subsets of X are said to be separated if each of them has neighbourhood that is
not a neighbourhood of the other.

3. Two subsets of X are said to be separated by (closed) neighbourhoods if they
have disjoint (closed) neighbourhoods.

4. Two subsets A, B of X are said to be (resp. precisely) separated by a continuous
function if there exists a continuous function f : X → R such that A ⊆ f−1({0})
(resp. A = f−1({0})) and B ⊆ f−1({1}) (resp. B = f−1({1})).

Definition 1.2 : Separation axioms

1. X is Kolmogorov (or T0) if any two distinct points in X are topologically indistin-
guishable.

2. X is Fréchet (or T1) if any two distinct points in X are separated. Equivalently, every
single-point set is a closed set.

3. X is Hausdorff (or T2) if any two distinct points in X are separated by neighbour-
hoods.

4. X is Urysohn (or T21/2) if any two distinct points in X are separated by closed
neighbourhoods.

5. X is completely Hausdorff (or completely T2) if any two distinct points in X are
separated by a continuous function.

6. X is regular Hausdorff (or T3) if it is both Kolmogorov and regular.

7. X is Tychonoff (or completely T3) if it is both Kolmogorov and completely regular.

8. X is normal Hausdorff (or T4) if it is both Fréchet and normal.

9. X is completely normal Hausdorff (or T5) if it is both Fréchet and completely
normal.

10. X is perfectly normal Hausdorff (or T6) if it both Kolmogorov and perfectly
normal.

Definition 1.3 : Normality axioms

1. X is normal if any two disjoint closed subsets of X are separated by neighbourhoods.
Equivalently, if they are separated by a continuous function.

2. X is completely normal if any two separated sets are separated by neighbourhoods.
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3. X is perfectly normal if any two disjoint closed sets are precisely separated by a
continuous function.

Definition 1.4 : Regularity axioms

1. X is symmetric (or R0) if any two topologically distinguishable points in X are
separated.

2. X is preregular (or R1) if any two topologically distinguishable points in X are
separated by neighbourhoods.

3. X is regular if for any point x and closed set F in X such that x /∈ F , F and {x} are
separated by neighbourhoods.

4. X is completely regular if for any point x and closed set F in X such that x /∈ F ,
F and {x} are separated by a continuous function.

5. X is normal regular if it is both symmetric and normal.

Proposition 1.5 : Relations between separation axioms

1. Perfectly normal Hausdorff ⇒ completely normal Hausdorff ⇒ normal Hausdorff
⇒ Tychonoff ⇒ completely Hausdorff ⇒ Urysohn ⇒ Hausdorff ⇒ Fréchet
⇒ Kolmogorov.

2. Normal Hausdorff ⇒ normal regular ⇒ completely regular ⇒ regular ⇒
preregular ⇒ symmetric.

3. Tychonoff ⇒ Regular Hausdorff ⇒ Urysohn.

4. Perfectly normal ⇒ completely normal ⇒ normal.

5. Perfectly normal ⇒ completely regular.

6. Fréchet ⇔ Kolmogorov and symmetric.

7. Hausdorff ⇔ Kolmogorov and preregular.

Proposition 1.6

Let (X, τ) be a topological space.
Then, X is Fréchet if, and only if, for all A ⊆ X, the intersection of all neighbourhoods of A

is equal to A.

Proof. Suppose X is Fréchet. Let A ⊆ X and write IA :=
⋂

U∈N (A) U . It is straightforward that
A ⊆ IA by definition of neighbourhoods. If A is empty, then ∅ is a neighbourhood of A, and thus
IA = ∅ = A. Otherwise, IA is non-empty since it contains A. Let x ∈ IA which means that, for all
U ∈ N (A), we have x ∈ U . By contradiction, suppose that x /∈ A, then, since the space is Fréchet,
for any a ∈ A, there exists an open neighbourhood of a that does not contain x, denote it by Ua.
Therefore, V :=

⋃
a∈A Ua does not contain x. However, it is an union of open sets, and therefore

open, as well as a set that contains all points of A by construction; hence is a V is neighbourhood
of A that does not contain x which contradicts the definition of x. Hence A = IA.

Suppose now that for all A ⊆ X we have A = IA. Let x, y ∈ X distinct points. Then, I{x} = {x}
and I{y} = {y}. By contradiction, if y is not seperated from x, i.e. there are no neighbourhood of
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x that does not contain y, then y ∈ I{x} hence y = x, a contradiction. Same for x. Therefore, x

and y are seperated and thus the space X is Fréchet.

1.2 Countability axioms

Definition 1.7 : Countability axioms

1. X is sequential if a subset A of X is open if every sequence converging to a point in
A is eventually in A.

2. X is first-countable if every point has a countable fundamental system of neighbour-
hoods.

3. X is second-countable if the topology has a countable base.

4. X is separable if there exists a countable dense subset.

5. X is Lindelöf if every open cover has a countable subcover.

6. X is σ-compact if there exists a countable cover by compact spaces.

7. X is paracompact if every open cover has an open refinement that is locally finite.

Proposition 1.8

1. Second-countable ⇒ first-countable ⇒ sequential.

2. Second-countable ⇒ separable and Lindelöf.

3. σ-compact ⇒ Lindelöf.

4. Regular and Lindelöf ⇒ paracompact.

5. Hausdorff and paracompact ⇒ normal.

1.3 Metric spaces

Proposition 1.9

Metrisable spaces (hence, metric spaces and discrete spaces) are:

• perfectly normal Hausdorff ,

• first-countable,

• paracompact.

Proposition 1.10

For a metrisable space:

second-countable ⇔ separable ⇔ Lindelöf.
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1.4 Differential manifolds
Proposition 1.11

Differential manifolds are:

• second-countable and Hausdorff by definition,

• paracompact,

• perfectly normal Hausdorff .

1.5 Uniform spaces

Proposition 1.12

Uniformisable spaces are:

• completely regular .

Proposition 1.13

For a uniformisable space:

Tychonoff ⇔ Hausdorff ⇔ Kolmogorov.

Proposition 1.14

Every metric space is completely uniformisable.
Every topological group is a uniformisable space.
Every regular paracompact space (in particular, every Hausdorff paracompact space) is
completely uniformisable.

2 Basic definitions of abstract topological rewriting theory

2.1 Classical abstract rewriting theory

Definition 2.1 : Abstract rewriting system

A (classical) abstract rewriting system consists of the data of an ordered pair (X, )
where X is a set and is a binary relation on X.

Notations for an abstract rewriting system (X, ):

• 0 := ∆X :=
{

(x, x) ∈ X2}: the identity relation on X.

• i+1 := i ◦ =
{

(x, y) ∈ X2
∣∣∣ ∃z ∈ X, x i z y

}
: the (i + 1)-fold composition for

i ∈ N.

• + :=
⋃∞

i=1
i : the transitive closure of .

• ⋆ := + ∪ 0 : the reflexive transitive closure of .

• = := ∪ 0 : the reflexive closure of .

•
−1

:=
{

(y, x) ∈ X2
∣∣ x y

}
: the inverse relation of .
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• :=
−1

: the inverse relation of .

• := ∪ : the symmetric closure of .

•
+

:= ( )+: the transitive symmetric closure of .

• ⋆ := ( )⋆: the reflexive transitive symmetric closure of , i.e. the equivalence
relation generated by .

Definition 2.2 : Confluence definitions

Let X := (X, ) be an abstract rewriting system.

1. X is Church-Rosser if ⋆ ⋆ ◦ ⋆ .

2. X is confluent if
⋆

◦ ⋆ ⊆ ⋆ ◦ ⋆ .

3. X is semi-confluent if ◦ ⋆ ⊆ ⋆ ◦ ⋆ .

4. X is locally confluent if ◦ ⊆ ⋆ ◦ ⋆ .

5. X is subcommutative if ◦ ⊆ = ◦ = .

6. X has the diamond property if ◦ ⊆ ◦ .

Proposition 2.3

For any abstract rewriting system X := (X, ) (write X⋆ := (X, ⋆ )), the following are
equivalent:

(i) X is confluent.

(ii) X is semi-confluent.

(iii) X is Church-Rosser.

(iv) X⋆ is locally confluent.

(v) X⋆ is subcommutative.

(vi) X⋆ has the diamond property.

Definition 2.4 : Normalisation

Let X := (X, ) be an abstract rewriting system.

1. n ∈ X is a normal form if {y ∈ X | n y} = ∅. Denote by NF (X) the set of
normal forms of X.

2. X is normalising if, for all x ∈ X,there exists a normal form n ∈ NF (X) such that
x ⋆ n.

3. X is terminating if for every x ∈ X, the reduction sequences starting from x are
finite.

4. X has the normal form property if, for all x ∈ X and n ∈ NF (X),
x ⋆ n ⇒ x ⋆ n.

5. X has the unique normal form property if, for all n0, n1 ∈ NF (X),
n0

⋆ n1 ⇒ n0 = n1.
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Theorem 2.5 : (Newman’s lemma)

Let X := (X, ) be an abstract rewriting system.
If X is terminating and locally confluent, then it is confluent.

Theorem 2.6

Let X := (X, ) be an abstract rewriting system.
Then we have the following properties:

1. If X is confluent, then it has the unique normal form property.

2. The normal form property and the unique normal form property are equivalent in X.

3. If X is normalising and has the unique normal form property, then it is Church-Rosser.

4. If X is subcommutative, then it is confluent.

2.2 Abstract topological rewriting theory

Definition 2.7 : Abstract topological rewriting system

An (abstract) topological rewriting system X consists of the data of a triple (X, τ, )
where (X, τ) is a topological space and is a binary relation on X.

For a topological rewriting system X := (X, τ, ), we write NF (X) for the set of normal forms
for the classical rewriting system (X, ).

Definition 2.8 : Topological rewriting relation

Let X := (X, τ, ) be a topological rewriting system.
The closure of ⋆ in the product space X2 endowed with the topology τX

dis × τ is called
the topological rewriting relation of X and is denoted .
We define the limit rewriting relation as: lim := \ ⋆ .

Write ⋆ (resp. ⋆ ) the transitive closure of (resp. the equivalence relation generated
by) .

Proposition 2.9

Let X := (X, τ, ) be a topological rewriting system.
Then, for all a, b ∈ X, we have a b if, and only if, for every neighbourhood U of b for the
topology τ , there exists c ∈ U such that a ⋆ c.

Proposition 2.10

Let X := (X, τ, ) be a topological rewriting system.
Then, for all a, b ∈ X if, and only if, there exists a sequence (cn)n∈N in X such that c0 = a,
a ⋆ cn for all n ∈ N and limn→∞ cn = b.

Corollary 2.11

For all a, b ∈ X, if a ⋆ b then a b, i.e. ⋆ ⊆ as relations on X.

This is because b is contained in any of its neighbourhoods.

7



Definition 2.12 : Discrete rewriting

Let X := (X, τ, ) be a topological rewriting system.
The system X has discrete rewriting if for all a, b ∈ X, having a b implies a ⋆ b.
This is equivalent to asserting any of the following statements:

• = ⋆ as relations on X,

• ⋆ is topologically closed in X2 for the product topology τX
dis × τ ,

• lim = ∅.

Proposition 2.13

Let X := (X, τ, ) be a topological rewriting system.
If τ = τX

dis is the discrete topology on X, then the system X has discrete rewriting.

The converse implication is not verified as shown in the following example:

Example 2.14 : (Discrete rewriting without discrete topology)

Consider the Sierpiński space X := {0, 1} equipped with the topology τ = {∅, {1} , X}.
Consider now the relation on X given by 1 0. Then ⋆ = {(0, 0), (1, 0), (1, 1)}. Hence,
the system has discrete rewriting if and only if (0, 1) is not adherent to ⋆ for the product
topology τX

dis × τ . But since {1} is open in (X, τ), the set {0} × {1} is a neighbourhood of
(0, 1) for the topology τX

dis × τ and it does not intersect ⋆ , hence ⋆ is closed for τX
dis × τ

and, therefore, the system has discrete rewriting.

Definition 2.15 : Branching closure

Let A, B, C, D be sets.
Let 1 ⊆ A × B, 2 ⊆ A × C, 3 ⊆ B × D, 4 ⊆ C × D be binary relations.
We say that the branching of 1 and 2 closes with respect to 3 and 4
if for all a ∈ A, b ∈ B and c ∈ C such that b 1 a 2 c, there exists d ∈ D such that
b 3 d 4 c.
In diagrams:

a

b c

d

1 2

3 4

Consider the case where B = C. When 1 = 2 =: (resp. 3 = 4 =: ) we
talk about branching closure of with respect to 3 and 4 (resp. branching
closure of 1 and 2 with respect to ).

Lemma 2.16

Let A, B, C, D be sets. Let 1 , 1 ⊆ A × B, 2 , 2 ⊆ A × C, 3 , 3 ⊆ B ×
D, 4 , 4 ⊆ C × D be binary relations.
Assume that:

• 1 ⊆ 1 ,

8



• 2 ⊆ 2 ,

• 3 ⊆ 3 ,

• 4 ⊆ 3 ,

Then, if the branching of 1 and 2 closes with respect to 3 and 4 , it follows that
the branching of 1 and 2 closes with respect to 3 and 4 .

Lemma 2.17

Let X and D be sets. Let ⋆ be an equivalence relation on X and 3 , 4 binary

relations from X to D. Let Y be a subset of X and write ⋆ the corestriction of ⋆ to Y .
Then, the branching of ⋆ and ⋆ closes with respect to 3 and 4 if, and only if, for

all x ∈ X and y ∈ Y such that x ⋆ y, there exists d ∈ D with x 3 d 4 y.

Corollary 2.18

Let X and D be sets. Let be a binary relation from X to D.
Then, for all x ∈ X there exists d ∈ D such that x d if, and only if, the branching of =
(equality on X) closes with respect to .

Definition 2.19 : Local, finitary and infinitary confluences

Let X := (X, τ, ) be a topological rewriting system. Let be a binary relation on X.
We say that the system X is locally confluent with respect to if the branching
of closes with respect to .
We say that the system X is finitary confluent with respect to if the branching
of ⋆ closes with respect to .
We say that the system X is infinitary confluent with respect to if the branching
of closes with respect to .

Since for all topological rewriting systems we have ⊆ ⋆ ⊆ , then, by Lemma 2.16, if
is a binary relation on X:

• finitary confluence with respect to implies local confluence with respect to ,

• infinitary confluence w.r.t implies finitary confluence w.r.t .

Definition 2.20 : Topological Church-Rosser

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ . Denote ⋆ and ⋆ the reflexive transitive closure of
and the equivalence relation generated by respectively.
We say that the system X has the Church-Rosser property with respect to if the
branching of ⋆ closes with respect to ⋆ . That is to say, for every a, b ∈ X such that
a ⋆ b, there exists c ∈ X such that a ⋆ c ⋆ b.
We say that the system X has the topological Church-Rosser property if is has the
Church-Rosser property with respect to .
This is equivalent to asserting that, for all a, b ∈ X such that a ⋆ b, there exists c ∈ X

such that a ⋆ c ⋆ b.
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In terms of diagrams:
a b

c⋆

⋆

⋆

This is the classical Church-Rosser property of the classical rewriting system (X, ).

Remark 2.21

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ . Let sub be a relation on X such that ⊆ sub ⊆ .

Assume that ⋆ ⊆ ⋆

sub (i.e. and sub generate the same equivalence relation). Then,
if the system X verifies the Church-Rosser property with respect to sub , then it also has
the Church-Rosser property with respect to .

Definition 2.22 : Infinitary confluence

Let X := (X, τ, ) be a topological rewriting system.
We say that the system X is infinitary confluent if the system is infinitary confluent with
respect to . That is to say, for any a, b, c ∈ X such that b a c, there exists d ∈ X

that satisfies b d c.
In terms of diagrams:

a

b c

d

This is exactly the diamond property of the classical rewriting system (X, ).

It follows that infinitary confluence implies the topological Church-Rosser property from any
system (since in classical rewriting theory, it is can be shown by induction that the diamond
property implies confluence which is equivalent to the classical Church-Rosser property).

Moreover, if is transitive, then the diamond property of (X, ) is equivalent to its
confluence. Hence, under the assumption that is transitive, infinitary confluence and the
topological Church-Rosser property are equivalent.

Definition 2.23 : Topological confluence

Let X := (X, τ, ) be a topological rewriting system.
We say that the system X is topologically confluent if the system is finitary confluent
with respect to , that is to say: for any a, b, c ∈ X such that b ⋆ a ⋆ c there exists
d ∈ X that satisfies b d c.
In terms of diagrams:

a

b c

d

⋆ ⋆
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We obtain the following strength implications (recall that classical confluence is nothing other
than finitary confluence with respect to ⋆ ):

Proposition 2.24

Let X := (X, τ, ) be a topological rewriting system.
If the system X is:

• classically confluent, or,

• infinitary confluent,

then it is also topologically confluent.

The converse implications are false in general, we will give counter-examples later.

Remark 2.25

If the system X has discrete rewriting, it is trivial to see that the notions of classical
confluence, topological confluence and infinitary confluence are equivalent.

Proposition 2.26

Let X := (X, τ, ) be a topological rewriting system. Let be a binary relation on X.

• Suppose (X, τ) is Fréchet and ⊆ ⋆ . Then, for any normal form n ∈ NF (X),
we have that, for all a ∈ X, if n a then n = a. It follows that if is reflexive,
then restricted to NF (X) is exactly the equality on NF (X).

• Suppose is anti-reflexive and ⊆ . Then, if a ∈ X is such that for all
b ∈ X with a b implies a = b, then a ∈ NF (X).

Proof. Assume (X, τ) is Fréchet. Let n ∈ NF (X) i.e. {a ∈ X | n a} = ∅. Let a ∈ X such that
n a. Then, for all neighbourhood U of a there exists b ∈ U such that n ⋆ b. But, since n is a
normal form, n = b. Hence, n ∈

⋂
U∈N (a) U . But that latter set is equal to {a} because the space

is Fréchet. Then, n = a. Now since is by assumption a subrelation of ⋆ , if n a then we
have n ⋆ a and hence n = a by applying inductively the previous discussion.

Assume now anti-reflexive. Let a ∈ X such that for all b ∈ X with a b implies a = b.
Assume there exists b ∈ X such that a b. On one hand, since is by assumption a subrelation
of , this implies a b and hence a = b by assumption. On the other hand, by anti-reflexivity
of , this also implies a ̸= b, a contradiction. Hence {b ∈ X | a b} = ∅, that is to say,
a ∈ NF (X).

Definition 2.27 : Topological normal forms properties

Let X := (X, τ, ) be a topological rewriting system. Let be a binary relation on X

such that ⊆ ⊆ ⋆ . Denote ⋆ and ⋆ the reflexive transitive closure of
and the equivalence relation generated by respectively.

• The system X has the property of the normal form (NF) with respect to
if the branching of ⋆ (corestricted to NF (X)) closes with respect to ⋆ and =
(equality on NF (X)), that is to say:

∀a ∈ X, ∀n ∈ NF (X) , a ⋆ n ⇒ a ⋆ n.
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• The system X has the topological property of the normal form (TNF) if it has
the property of the normal form with respect to , i.e. :

∀a ∈ X, ∀n ∈ NF (X) , a ⋆ n ⇒ a ⋆ n.

• The system X has the property of the unique normal form (UN) with respect
to if the branching of ⋆ (restricted and corestricted to NF (X)) closes with
respect to = (equality on NF (X)), that is to say:

∀n, n′ ∈ NF (X) , n ⋆ n′ ⇒ n = n′.

• The system X has the topological property of the unique normal form (TUN)
if the property of the unique normal form with respect to , i.e. :

∀n, n′ ∈ NF (X) , n ⋆ n′ ⇒ n = n′.

Remark 2.28

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ . Let sub be a relation on X such that ⊆ sub ⊆ .
By Lemma 2.16, if the system X is UN with respect to , then it is also UN with respect
to sub . In particular, if the system is TUN, then it is also UN with respect to .

Now, assume that ⋆ ⊆ ⋆

sub (i.e. and sub generate the same equivalence relation)
then:

• the system is UN with respect to if and only if it is UN with respect to sub ,

• if the system is NF with respect to sub , then it is also NF with respect to .

Proposition 2.29

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ .
Assume that the space (X, τ) is Fréchet.
Then, if the system X is NF with respect to , it is also UN with respect to .

Proof. If we denote ⋆

1 the corestriction of ⋆ to NF (X) and ⋆

2 the restriction of ⋆

1 to

NF (X), it is clear that ⋆

2 is a subrelation of ⋆

1 .

Now, because by hypothesis the space is Fréchet, we obtain by Proposition 2.26 that ⋆ restricted
to NF (X) is actually the equality on NF (X).

We conclude therefore by Lemma 2.16 that if the system is NF with respect to it is also UN
with respect to that same relation.

Proposition 2.30

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ .
Assume that the space (X, τ) is Fréchet.
Then, if the system X verifies the Church-Rosser property with respect to , it is NF
with respect to .
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Proof. If we denote ⋆

1 the corestriction of ⋆ to NF (X), it is clear that ⋆

1 is a subrelation of
⋆ . Morever, because by hypothesis the space is Fréchet, we deduce from Proposition 2.26 that
⋆ restricted to NF (X) is exactly the equality on NF (X). Therefore, NF with respect to is a

branching closure property weaker than the Church-Rosser property with respect to according
to Lemma 2.16.

Corollary 2.31

Let X := (X, τ, ) be a topological rewriting system.
Assume the space (X, τ) is Fréchet. Then:

infinitary conf ⇒ topo. C-R ⇒ TNF ⇒ TUN.

Corollary 2.32

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ . Let sub be a relation on X such that ⊆ sub ⊆ .
Assume the space (X, τ) is Fréchet and that and sub generate the same equivalence

relation (i.e. we have ⋆ ⊆ ⋆

sub ). Then:

C-R w.r.t sub ⇒
(

C-R w.r.t ∧ NF w.r.t sub

)
(

C-R w.r.t ∨ NF w.r.t sub

)
⇒ NF w.r.t

NF w.r.t ⇒ UN w.r.t

UN w.r.t ⇔ UN w.r.t sub

Example 2.33 : (Counter-example “topological confluence ⇒ infinitary confluence”)

Consider the set (ω + 1) := N ∪ {∞}. This is the successor ordinal to ω, the first infinite
ordinal. It can be equipped with the order topology. Concretely, this means that for every
n ∈ N, {n} is open but a fundamental system of neighbourhoods of ∞ in that topological
space is given by the family of intervals Ja .. ∞K := {n ∈ N | a ⩽ n} where a lives in N. It
follows that the space is Hausdorff (hence, Fréchet a fortiori).
Consider the set X := (N ∪ {∞}) × (N ∪ {∞}) equipped with the product topology τ of the
order topology on each factor. The space X is thus also Hausdorff.
Now, construct the topological rewriting system on (X, τ) by defining the following relation
on X:

(n, m) (n + 1, m) (n, m) (n, m + 1) ∀n, m ∈ N.

Hence, it follows that (n1, m1) ⋆ (n2, m2) if and only if n1, n2, m1, m2 ∈ N and n1 ⩽ n2

and m1 ⩽ m2. Therefore, the system is confluent. Indeed, for all n, m, n1, m1, n2, m2 ∈ N
such that:

(n, m)

(n1, m1) (n2, m2)

⋆ ⋆
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we have:
(n1, m1) (n2, m2)

(max {n1, n2} , max {m1, m2})
⋆ ⋆

Hence, by confluence, it follows that the system is topologically confluent.
However, we have:

(1, 0) (2, 0) · · · (∞, 0)

(0, 0)

(0, 1) (0, 2) · · · (0, ∞)

And (0, ∞) and (∞, 0) are distinct normal forms in the system. Hence, since the space is
Fréchet, the system cannot be infinitary confluent, since that would imply the topological
property of unique normal form.

Proposition 2.34

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ . Let sub be a relation on X such that ⊆ sub ⊆ .

Assume that and sub generate the same equivalence relation (i.e. we have ⋆ ⊆ ⋆

sub ).

Then the Church-Rosser property with respect to sub implies that the branching of ⋆

closes with respect to ⋆

sub .

Proof. Assume that the system verifies the Church-Rosser property with respect to sub . Let

a, b, c ∈ X such that b ⋆ a ⋆ c. Then, b ⋆ c. But since by hypothesis and sub generate

the same relation, we get b ⋆

sub c and therefore, by Church-Rosser assumption, there exists d ∈ X

such that b ⋆

sub d ⋆

sub c. Thus the conclusion.

Corollary 2.35

With the same hypotheses and notations, the Church-Rosser property with respect to sub

implies that the system is finitary confluent with respect to ⋆

sub and, therefore, also with

respect to ⋆ .

Definition 2.36 : Topologically normalising

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that = ⊆ ⊆ ⋆ .
We say that the system X is normalising with respect to if the branching of the
equality on X closes with respect to corestricted to normal forms, that is to say, if:

∀a ∈ X, ∃n ∈ NF (X) , a n.

We say that the system X is topologically normalising (TN) if it is normalising with
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respect to ⋆ , that is to say:

∀a ∈ X, ∃n ∈ NF (X) , a ⋆ n.

Lemma 2.37

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ .
Suppose that the space (X, τ) is Fréchet and that the system X is normalising with respect
to ⋆ .
Then being UN with respect to is equivalent to the following statement:

∀a ∈ X, ∀n, n′ ∈ NF (X) , n ⋆ a ⋆ n′ ⇒ n = n′.

Proof. The left-to-right direction is trivial and does not require any of the hypotheses. Now for the
other direction:

Let n, n′ ∈ NF (X) such that n ⋆ n′. Decompose it with elements (a1, · · ·, aℓ) ∈ Xℓ such that:

n a1 a2 · · · aℓ n′.

Now, since the space is Fréchet by hypothesis, we get that either a1 = n (resp. aℓ = n′) or
n a1 (resp. aℓ n′) by Proposition 2.26. Assume thus, by contradiction that n ̸= n′ and
therefore a1 ≠ n and aℓ ≠ n′. Now, call a “valley” in the sequence a1 a2 · · · aℓ an index
i ∈ J2 .. ℓ − 1K such that ai−1 ai ai+1. Show by induction on the number ν of valleys in the
sequence that n = n′.

Base step: if there are no valleys, then the sequence is of the form:

n a1 a2 · · · ai ai+1 · · · aℓ n′.

Therefore, it suffices to use the assumption to conclude that n = n′ because we have n ⋆ ai
⋆ n′.

Induction step: let ν ∈ N. Assume that, if there are up to ν valleys between n and n′ then n = n′.
Consider there are ν + 1 valleys and let i ∈ J2 .. ℓ − 1K be any of the valleys, say the right-most for
simplicity, i.e. we have:

ai−1 ai ai+1 ai+2 · · · aℓ n′.

Since this is by construction the right-most valley, there exists j ∈ Ji + 2 .. ℓK such that:

ai−1 ai ai+1 ai+2 · · · aj aj+1 · · · aℓ n′.

Since the system X is normalising with respect to ⋆ there exists n′′ ∈ NF (X) such that ai
⋆ n′′.

Hence, note how we obtain:
ai−1

⋆ n′′ ⋆ aj
⋆ n′.

But by assumption we conclude that n′ = n′′. Hence, the following sequence obtains by considering
everything that is left to ai−1:

n a1 a2 · · · ai−1
⋆ n′

contains ν valleys and therefore, by induction hypothesis, we conclude that n = n′.
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The hypothesis that the system is normalising is required as shown by the following counter-
example:

Example 2.38

Consider X := {n, a, c, b, n′} a set of 5 distinct elements equipped with the discrete topology
and the relation:

n a c b n′ and c c.

This gives a topological rewriting system X.
It is clear that NF (X) = {n, n′}. Note how c never rewrites into n nor n′: the system is not
normalising with respect to ⋆ .
But since n ⋆ n′ and n ̸= n′, then the system is not UN with respect to .
However, if we denote, for x ∈ X, NF (x) :=

{
α ∈ NF (X)

∣∣∣ x ⋆ α
}

, then we have:

NF (n) = {n} , NF (a) = {n} , NF (c) = ∅, NF (b) = {n′} , NF (n′) = {n′} .

Hence, for all x ∈ X and α, β ∈ NF (X) such that α ⋆ x ⋆ β, we do indeed have α = β.

Proposition 2.39

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ .
Then, the system X is UN with respect to and normalising with respect to ⋆ if, and
only if, it satisfies:

∀a ∈ X, ∃!n ∈ NF (X) , a ⋆ n.

Proof. The left-to-right direction is immediate. The other direction is obtained with Lemma 2.37.

Proposition 2.40

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ .
If the system X is UN with respect to and normalising with respect to ⋆ , then it
verifies the Church-Rosser property with respect to .

Proof. Let a, b ∈ X such that a ⋆ b. By the hypothesis of normalisation, there exists na, nb ∈
NF (X) such that a ⋆ na and b ⋆ nb. Thus, we get na

⋆ nb. But since by hypothesis the system
is UN with respect to , then na = nb. Hence, in summary:

a b

na = nb

⋆

⋆ ⋆

Corollary 2.41

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ . Let sub be a relation on X such that ⊆ sub ⊆ .

Assume that and sub generate the same equivalence relation (i.e. we have ⋆ ⊆ ⋆

sub ).
If we have:
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(i) (X, τ) is Fréchet,

(ii) the system X is normalising with respect to ⋆ ,

then we have:

C-R w.r.t ⇔ NF w.r.t ⇔ UN w.r.t ⇔ UN w.r.t sub .

In particular, if the system is normalising with respect to ⋆

sub in addition, then all properties
(C-R, NF and UN) with respect to either or sub are equivalent.

Corollary 2.42

Let X := (X, τ, ) be a topological rewriting system.
If we have:

(i) (X, τ) is Fréchet,

(ii) the system X is topologically normalising (TN),

then we have:
topo. C-R ⇔ TNF ⇔ TUN

Furthermore, if the relation is transitive, then we have: infinitary conf. ⇔ topo. C-R.

2.3 Rewriting on uniform spaces

Definition 2.43 : Filter

Let X be a set.
A filter on X is a collection F ⊆ P(X) of subsets of X such that it satisfies the following
axioms:

(F-I) Closure under supersets: ∀A ⊆ X, (∃B ∈ F, B ⊆ A) ⇒ A ∈ F,

(F-II) Closure under finite intersections: ∀A, B ∈ F, A ∩ B ∈ F and X ∈ F,

(F-III) Does not contain the empty set: ∅ /∈ F.

For instance, if A is a non-empty subset of a topological space X, then the set of all neighbourhoods
of A is a filter on X.

Uniform spaces are a generalisation of both metric spaces and topological groups.

Definition 2.44 : Uniform structure

Let X be a set.
A uniform structure on X is a collection U ⊆ P(X × X) of binary relations on X (called
entourages) such that U is a filter on X × X that satisfies the following axioms:

(U-I) Every entourage is reflexive: ∀V ∈ U, ∀x ∈ X, xV x,

(U-II) The inverse of an entourage is an entourage: ∀V ∈ U, V −1 ∈ U

where V −1 is the relation such that xV −1y if and only if yV x.

(U-III) There always exists a “half-size” entourage: ∀V ∈ U, ∃W ∈ U, W ◦ W ⊆ V
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where we have x(W ◦ W )z if and only if, there exists y ∈ X with xWy and yWz.

Definition 2.45 : Uniform space

Let (X, τ) be a topological space.
A uniform structure U on X is said to be compatible with the topology τ if:

∀U ⊆ X, U open in (X, τ) ⇔ (∀x ∈ U, ∃V ∈ U, V (x) ⊆ U),

where V (x) := {y ∈ X | xV y}.
If such a structure exists, we say that the topological space (X, τ) is uniformisable.
The data of (X, τ,U) where (X, τ) is a uniformisable space and U is a uniform structure on
X compatible with the topology τ is called a uniform space.

Example 2.46 : (Metric spaces are uniformisable)

Let (X, d) be a metric space. Write τd the topology on X induced by the metric d.
Consider the family U := (Vr)r∈R>0

of binary relations on X defined as, for r ∈ R>0:

∀x, y ∈ X, xVry
def⇔ d(x, y) ⩽ r.

Then, U is a uniform structure on X that is compatible with the topology τd.

Example 2.47 : (Topological groups are uniformisable)

Let (G, τ) be a topological group written multiplicatively. Write 1 ∈ G the identity element.
Consider the set U of binary relations X defined as:

∀V ⊆ G × G, V ∈ U
def⇔ ∃U ∈ N (1) ,

{
(x, y) ∈ G × G

∣∣ x · y−1 ∈ U
}

⊆ V.

Then, U is a uniform structrue on G that is compatible with the topology τ .

Definition 2.48 : Attractive Normal Forms (ANF)

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ .
The system X has globally attractive normal forms (GANF) with respect to
if there exists a uniform structure U on X compatible with the topology τ such that:

∀n ∈ NF (X) , ∀a, b ∈ X, ∀V ∈ U, aV n ∧ a b ⇒ bV n.

The system X has locally attractive normal forms (LANF) with respect to if
there exists a uniform structure U on X compatible with the topology τ such that:

∀n ∈ NF (X) , ∃Vn ∈ U, ∀a ∈ Vn(n), ∀b ∈ X, ∀V ∈ U

aV n ∧ a b ⇒ bV n

It is quite straightforward to see that GANF with respect to relation implies LANF with respect
to that same relation.
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Remark 2.49

If sub is a relation such that ⊆ sub ⊆ and if the system is GANF (resp. LANF)
with respect to , then it is also GANF (resp. LANF) with respect to sub .
Also, by simple inductive reasoning, we see that a system is GANF (resp. LANF) with
respect to a relation if, and only if, it is GANF (resp. LANF) with respect to the
reflexive transitive closure ⋆ .

Proposition 2.50

Let X := (X, τX
dis, ) be a topological rewriting system where τX

dis is the discrete topology.
Then, the system X has LANF with respect to .

Theorem 2.51

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ ⋆ . Let sub be a relation on X such that ⊆ sub ⊆ .

Assume that and sub generate the same equivalence relation (i.e. we have ⋆ ⊆ ⋆

sub ).
If the following is verified for X:

(i) (X, τ) is Hausdorff,

(ii) the system X is normalising with respect to ⋆

sub ,

(iii) the relation is transitive (i.e. ⋆ ⊆ ),

(iv) the system X has locally attractive normal forms (LANF) with respect to ,

then, we have the following equivalent properties for X:

finitary confluence w.r.t ⋆ ⇔ Church-Rosser property w.r.t sub

Proof. The right-to-left direction has been shown in Corollary 2.35.
Now, for the converse direction, according to Corollary 2.41, it suffices to show that finitary

confluence w.r.t ⋆ implies UN with respect to under the assumptions (i) — (iv) (because
Hausdorff implies Fréchet). Write U the uniform structure on X compatible with the topology τ

that is implied by the assumption of LANF with respect to .
Assume the system X is finitary confluent with respect to ⋆ . Show that hypotheses (i) — (iv)

imply UN with respect to . In order to prove this, use Lemma 2.37 since by hypothesis (i) the
space is Fréchet and by hypothesis (ii) the system is normalising with respect to ⋆

sub and thus with

respect to ⋆ as well.
Let a ∈ X and n, n′ ∈ NF (X) such that n ⋆ a ⋆ n′ and show that n = n′. By LANF with

respect to sub , there exist Vn and Vn′ in U such that for all V ∈ U and for all b, c ∈ X such that
nVnb (resp. n′Vn′b), bV n (resp. bV n′) and b sub c, we have cV n (resp. cV n′).

Let U and U ′ be neighbourhoods of n and n′ respectively. By compatibility with the topology,
there exists V and V ′ in U such that V (n) ⊆ U and V ′(n′) ∈ U ′. Now, denote W := Vn ∩ V and
W ′ := Vn′ ∩ V ′. Note how W (n) and W ′(n′) are neighbourhoods of n and n′ respectively that
verify W (n) ⊆ U and W ′(n′) ⊆ U ′.

Now, since sub ⊆ and is transitive by hypothesis (iii), we get n a n′. It follows

that there exists (b, b′) ∈ W (n) × W ′(n′) such that b ⋆ a ⋆ b′. By assumption, there exists
c ∈ X such that b ⋆ c ⋆ b′. But, since bWn and b′W ′n′ by construction, then we get, by
hypothesis (iv), cWn and cW ′n′. That is to say, we have c ∈ W (n) ∩ W ′(n′). But recall that
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W (n) ∩ W ′(n′) ⊆ U ∩ U ′. In other words, we proved that, for any U and U ′ neighbourhoods of n

and n′ respectively, U ∩ U ′ ̸= ∅. Hence, by the Hausdorff property, it follows that n = n′.

According to Corollary 2.35 and Corollary 2.41, we obtain the following equivalences between
notions:

Corollary 2.52

With the same hypotheses (i) — (iv) and notations, then all the following statements are
equivalent in the system X:

• finitary confluence with respect to ⋆ (or ⋆

sub ),

• Church-Rosser property with respect to (or sub ),

• normal form (NF) property with respect to (or sub ),

• unique normal form (UN) property with respect to (or sub ).

In particular, if we take and sub both as equal to , then we obtain the following corollary:

Corollary 2.53

Let X := (X, τ, ) be a topological rewriting system.
If the following is verified for X:

(i) (X, τ) is Hausdorff,

(ii) the system X is topologically normalising (TN),

(iii) the relation is transitive (i.e. ⋆ ⊆ ),

(iv) the system X has locally attractive normal forms (LANF) with respect to ,

then, we have the following equivalent properties for X:

topological confluence ⇔ topological Church-Rosser property ⇔ infinitary confluence.

2.4 Limit rewriting induces rewriting chains

Definition 2.54 : Topological rewriting with chains

Let X := (X, τ, ) be a topological rewriting system.
We define the topological rewriting with chains relation, denoted by , as, for
a, b ∈ X:

a b
def⇔ ∃ (cn)n∈N ∈ XN,


c0 = a,

cn
= cn+1 ∀n ∈ N,

limn→∞ cn = b.

Write ⋆⋄ the equivalence relation generated by .

By Proposition 2.10, it is easy to see that ⊆ . It follows that ⋆⋄ ⊆ ⋆ by
properties of generated equivalence relations. It also entails that the converse of that latter inclusion
is verified if and only if ⊆ ⋆⋄ .
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However, consider the following example that shows that the converses inclusions are not true in
general:

Example 2.55

Consider X := [0 ; 1] endowed with the euclidean topology τ . Consider the topological
rewriting system X := (X, τ, ) where is the relation:

1 1
2n

∀n ⩾ 1.

Then we have 1 0 because for any ε > 0, there exists nε ⩾ 1, such that ε > 1
2nε and we

conclude since we have 1 1
2nε .

However, we do not have 1 0 because every 1
2n for n ⩾ 1 is a normal form.

Moreover, we have ⋆⋄ =
{ ( 1

2n , 1
2m

) ∣∣ n, m ∈ N
}

and hence (1, 0) /∈ ⋆⋄ thus
⋆ ̸⊆ ⋆⋄ .

This motivates the following definition:

Definition 2.56 : Chains exist

Let X := (X, τ, ) be a topological rewriting system.
We say that chains exist in the system X if:

∀a, b ∈ X, a b ⇒ a b.

Consider the following notion:

Definition 2.57 : Rewriting stability

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ .
We say that the relation has rewriting stability if:

∀a, b ∈ X, a b ⇒ ∀U ∈ N (b) , ∃c ∈ U, a ⋆ c b.

Example 2.58

The topological rewriting with chains relation has rewriting stability. Indeed, let a, b ∈ X

and U be a neighbourhood of b. By definition, if a b there exists a sequence (cn)n∈N such
that c0 = a, cn

= cn+1 for all n ∈ N and limn→∞ cn = b. By that latter limit condition,
we deduce that there exists N ∈ N such that for all n ∈ N, we have cn ∈ U . But by
the rest of the conditions, it follows, on one hand, that a = c0

= c1
= c2

= · · · = cN ,
hence, a ⋆ cN and, on the other hand, cN b since the sequence (cN+n)n∈N satisfies the
definition.

In fact, when the underlying topological space is first-countable, any other relation that has
rewriting stability is a subrelation of . In particular, that latter relation is the biggest relation
that has rewriting stability, as shown in the following proposition:

Proposition 2.59

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ .
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Assume that the space (X, τ) is first-countable.
Then, the relation has rewriting stability if, and only if, ⊆ .

Proof. As shown in the previous example, the relation has rewriting stability. Therefore, it is
clear that any subrelation has that property as well, which gives us the right-to-left direction.

For the left-to-right direction, consider a relation that has rewriting stability.
Let a, b ∈ X such that a b. Since, by hypothesis, (X, τ) is first-countable there exists

(
Bb

n

)
n∈N

a countable neighbourhood basis of b that is totally ordered for the ⊇ relation. Let us now construct
a rewriting chain (ck)k∈N from a to b to show that indeed a b.

Base step is to set c0 := a. Now, the inductive step consists in assuming that the sequence (ck)k∈N
has been constructed up to and including the step K ∈ N in such a way that for all k ∈ J0 .. K − 1K
we have ck

= ck+1 and cK b. Consider the following set:

MK :=
{

n ∈ N
∣∣ cK /∈ Bb

n

}
.

If MK is empty, this means that cK ∈
⋂

n∈N Bb
n. Therefore, we can set ck := cK for all k ⩾ K

and we get the desired result.
Otherwise, MK is a non-empty set of natural numbers. Therefore, it must admit a minimum;

let us write it N := min MK . Then, since cK b by induction hypothesis, we deduce using the
assumption that we have rewriting stability that there exists c ∈ Bb

N such that cK
⋆ c b with

cK ̸= c (by defintion of N). If ℓ ⩾ 1 is the length of the chain betweeen cK and c (i.e. we
have cK = d0 d1 · · · dℓ = c), then define the ℓ next terms of the (ck)k∈N sequence by
cK+i = di for all i ∈ J1 .. ℓK. It is clear that induction hypothesis is verified for the step K + ℓ. Thus
we can continue.

Repeating this process ad infinitum yields a sequence (ck)k∈N that is:

• either stationary in a point that is not separated (in the topological sense) from b; hence the
sequence converges to b,

• or not stationary but it still converges to b because the cK ’s are chosen to be always in a
neighbourhood Bb

N that is strictly contained in the neighbourhood of the previous cK . But
since

(
Bb

n

)
n∈N is a neighbourhood basis of b, it follows that the sequence (ck)k∈N converges

to b.

The constructed sequence (ck)k∈N is thus such that c0 = a, ck
= ck+1 for all k ∈ N and

limk→∞ ck = b, i.e. a b.

Corollary 2.60

Let X := (X, τ, ) be a topological rewriting system.
Assume that (X, τ) is first-countable.
Then, chains exists in X if, and only if, has rewriting stability.

Proof. The left-to-right direction does not require the first-countability hypothesis because it implies
that is equal to which always has rewriting stability.

The other direction is direct consequence of the previous proposition.

We can see how we utilise the fact that the repetition of the induction step yields a well-defined
rewriting chain because, at each step, we get closer with respect to the neighbourhood basis. Let us
introduce the notion of “proximity maps” in first-countable spaces to explicit a characterisation of
rewriting stability that does not depend on explicitly checking all neighbourhood of the limit point.
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Definition 2.61 : Proximity map

Let (X, τ) be a first-countable topological space.
We say that we define proximity maps on X when we fix for each x ∈ X, a countable
neighbourhood basis (Bx

n)n∈N of x that is totally ordered for ⊇ and define the proximity
map for x with respect to the choosen basis (Bx

n)n∈N as:

Px : X → N ∪ {∞}

y 7→ Px(y) :=

∞ if y ∈
⋂

n∈N Bx
n,

min {n ∈ N | y /∈ Bx
n} otherwise.

Theorem 2.62

Let X := (X, τ, ) be a topological rewriting system and be a binary relation on X

such that ⊆ ⊆ .
Assume that (X, τ) is first-countable and define proximity maps Px for x ∈ X.
Then, has rewriting stability if and only if for all a, b ∈ X such that a b, there exists
c ∈ X that satisfy the following conditions:

(i) a ⋆ c b,

(ii) Pb(c) > Pb(a).

2.5 Topological Newman’s lemma

Todo

3 Rewriting on commutative formal power series in several
variables

3.1 Construction of commutative formal power series in several variables

Todo: Cauchy completion on the multivariate polynomials in commuting variables {x1, · · ·, xn}
with respect to the metric inducing the (x1, · · ·, xn)-adic topology. Zariski ring (i.e. ideals are
topologically closed for the adic topology).

Write K[[x1, · · ·, xn]] the topological algebra of commutative formal power series in n variables
with respect to the topology τδ induced by the metric δ:

∀f, g ∈ K[[x1, · · ·, xn]], δ(f, g) := 1
2val(f−g) ,

where val(h) is the least degree of monomials appearing in the support of a non-zero formal power
series h. We set by convention val(0) = ∞ and 1

2∞ = 0.

3.2 Reduction on commutative formal power series

Write [x1, · · ·, xn] the commutative monoid generated by {x1, · · ·, xn} written multiplicatively and
with identity element 1. We call monomials the elements of [x1, · · ·, xn].

For a formal power series f ∈ K[[x1, · · ·, xn]] and a monomial m ∈ [x1, · · ·, xn], we write ⟨f |m⟩ ∈ K
the coefficient of m in f .
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A monomial order is a total order < on [x1, · · ·, xn] such that it is compatible with monomial
multiplication:

∀m, m1, m2 ∈ [x1, · · ·, xn], m1 < m2 ⇒ m · m1 < m · m2.

The opposite order <op of a monomial order < is a monomial order.
A monomial order is said to be compatible with the degree if the degree function on [x1, · · ·, xn]

is increasing:
∀m1, m2 ∈ [x1, · · ·, xn], m1 ⩽ m2 ⇒ deg(m1) ⩽ deg(m2).

We say that a monomial order is admissible if 1 is minimal:

∀m ∈ [x1, · · ·, xn] \ {1} , 1 < m.

This is equivalent to saying that < is a well-order.
For a monomial order <, we denote by LM< (f) the maximal element for < in the support of any

non-zero formal power series f (provided it exists). If it exists, we write LC< (f) its coefficient in f

and LT< (f) := LC< (f) LM< (f) as well as r< (f) := LT< (f) − f .
If < is an admissible monomial order and f is an infinite formal power series, then LM< (f) is

not defined; however, LM<op (f) is.
Also, note how if < is an admissible monomial order compatible with the degree, then we have

for any non-zero formal power series f :

val(f) = deg (LM<op (f)) .

Let R be non-empty set of non-zero formal power series in K[[x1, · · ·, xn]] and let < be an admissible
monomial order.

We define the following relation
R

on K[[x1, · · ·, xn]], called multivariate series reduction:

λ(m · LM<op (s)) + S
R

λ

LC<op (s)m × r<op (s) + S

where:

• λ ∈ K \ {0},

• m ∈ [x1, · · ·, xn],

• s ∈ R,

• S ∈ K[[x1, · · ·, xn]] such that m · LM<op (s) is not in its support.

We say that we rewrite the monomial M := m · LM<op (s) using the rule s in the formal
power series f := λ(m · LM<op (s)) + S.

Proposition 3.1

The relation
R

is anti-reflexive.

Consider the topological rewriting system XR := (K[[x1, · · ·, xn]], τδ,
R

).
Denote by:

• ⋆

R
the reflexive transitive closure of

R
, ( ⋆

R
the generated equivalence relation),

•
R

the topological rewriting relation associated with XR, ( ⋆

R
the generated equivalence

relation),
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•
R

the topological rewriting with chains relation associated with XR, ( ⋆⋄
R

the generated
equivalence relation),

•
R

the relation defined as follows:

f
R

g
def⇔ ∃S := {s1, · · ·, sr} ⊆ R, f

S
g.

( ⋆⋄
R

the generated equivalence relation),

We have:
R

⊆ ⋆

R
⊆

R
⊆

R
⊆

R
.

3.3 Deciding the ideal membership problem

Lemma 3.2

If the order < is compatible with the degree, then for any h ∈ K[[x1, · · ·, xn]] and any s ∈ R,
we have h × s

R
0.

Proof. Write supp (h) as the sequence (mk)k strictly increasing (possible because the order is of
type ω). If we write u := card(supp (h)), then:

h =
u∑

k=0
⟨h|mk⟩ mk

and thus:
h × s =

u∑
k=0

⟨h|mk⟩ mk × s.

If u < ∞, then it clear that h × s ⋆

{s}
0 by rewriting successively the mk with k increasing.

If u = ∞, then we define the infinite sequence (rk)k∈N as r0 := h × s and for any k ∈ N:

rk+1 := rk − LC<op (rk)
LC<op (s) mk × s.

Then, we see that h × s = r0 {s}
r1 {s}

r2 {s}
· · · .

Since the order is compatible with the degree, it follows that the sequence (rk)k∈N is Cauchy and
therefore has a limit since K[[x1, · · ·, xn]] is complete. Moreover, since mk is strictly increasing and
LM<op (rk) = mk × LM<op (s), we get that:

lim
k→∞

rk = 0.

Hence, h × s
{s}

0, i.e. h × s
R

0.

Lemma 3.3 : (Translation lemma)

If the order < is compatible with the degree, then for all f, g, h ∈ K[[x1, · · ·, xn]], if f −g
R

h

then there exist f ′, g′ ∈ K[[x1, · · ·, xn]] such that h = f ′ − g′, f
R

f ′ and g
R

g′.

Proof. Since f − g
R

h, there exists S := {s1, · · ·, sr} ⊆ R and a sequence (hk)k∈N of formal power
series such that h0 = f − g, hk

=
S

hk+1 for all k ∈ N and limk∈∞ hk = h.
Let us contruct two new sequences (fk)k∈N and (gk)k∈N. Set f0 := f and g0 := g.
Let k ∈ N.
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If hk = hk+1, then set fk+1 := fk and gk+1 := gk.
Otherwise, there must exist m ∈ [x1, · · ·, xn] and s ∈ S such that hk+1 = hk − ⟨hk|m·LM<op (s)⟩

LC<op (s) m×s.
Then, set:

fk+1 := fk − ⟨fk|m · LM<op (s)⟩
LC<op (s) m × s, gk+1 := gk − ⟨gk|m · LM<op (s)⟩

LC<op (s) m × s.

Hence, we get fk
=
S

fk+1 and gk
=
S

gk+1. Therefore, the sequences (fk)k∈N and (gk)k∈N are
Cauchy by compatibility with the degree. They thus admit limits; write them f ′ and g′ respectively.
In particular, we have f

S
f ′ and g

S
, hence: f

R
f ′ and g

R
g′.

Let us show by induction that for all k ∈ N, we have hk+1 = fk+1 −gk+1. The base step is verified.
Let k ∈ N such that hk = fk − gk. Then:

hk+1 = hk − ⟨hk|m · LM<op (s)⟩
LC<op (s) m × s

= (fk − gk) − ⟨fk − gk|m · LM<op (s)⟩
LC<op (s) m × s

=
(

fk − ⟨fk|m · LM<op (s)⟩
LC<op (s) m × s

)
−
(

gk − ⟨gk|m · LM<op (s)⟩
LC<op (s) m × s

)
hk+1 = fk+1 − gk+1

Therefore, we get:

h = lim
k∈N

hk = lim
k∈N

(fk − gk) = lim
k∈N

fk − lim
k∈N

gk = f ′ − g′.

Hence, the desired result.

A direct consequence of this Translation lemma is the case where h = 0:

Corollary 3.4 : Translation corollary

If the order < is compatible with the degree, then for all f, g ∈ K[[x1, · · ·, xn]] such that
f − g

R
0, there exists h ∈ K[[x1, · · ·, xn]] such that f

R
h

R
g.

Denote by ≡I(R) the congruence relation modulo the ideal in K[[x1, · · ·, xn]] generated by R.

Theorem 3.5

If the order < is compatible with the degree, then for all f, g ∈ K[[x1, · · ·, xn]] such that
f ≡ g (mod I(R)), we have f ⋆⋄

R
g. In other words, we have ≡I(R)⊆ ⋆⋄

R
.

Proof. Let us show by induction on r that for all f, g ∈ K[[x1, · · ·, xn]], for all {s1, · · ·, sr} ⊆ R and
for all (q1, · · ·, qr) ∈ K[[x1, · · ·, xn]]r such that g − f =

∑r
i=1 qi × si, we have f ⋆⋄

R
g.

Base step: if r = 0, then we always have f = g and there is nothing to prove since ⋆⋄
R

is
reflexive being an equivalence relation.

Induction step: let r ∈ N and assume the induction hypothesis for r. Let f, g ∈ K[[x1, · · ·, xn]] and
{s1, · · ·, sr+1} ⊆ R and (q1, · · ·, qr+1) ∈ K[[x1, · · ·, xn]]r+1 such that g−f = qr+1×sr+1+

∑r
i=1 qi×si.

By Lemma 3.2, we have qr+1 × sr+1 R
0.

Thus, we can apply the Corollary 3.4 of translation on f − f + qr+1 × sr+1 and we deduce there
exists h ∈ K[[x1, · · ·, xn]] such that:

f + qr+1 × sr+1 R
h

R
f.
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In particular, we have f + qr+1 × sr+1
⋆⋄
R

f .
But, by definition we have:

f + qr+1 × sr+1 = g −
r∑

i=1
qi × si.

It follows, by induction hypothesis applied for f := f + qr+1 × sr+1 and g := g, that f + qr+1 ×
sr+1

⋆⋄
R

g.

By transitivity, we finally conclude that f ⋆⋄
R

g.
Now let f, g ∈ K[[x1, · · ·, xn]]. Assume that f ≡ g (mod I(R)). Hence, g − f ∈ I(R). Hence,

there exist {s1, · · ·, sr} ⊆ R and (q1, · · ·, qr) ∈ K[[x1, · · ·, xn]]r such that g − f =
∑r

i=1 qi × si. And
therefore, by the previous discussion, since r is finite, we have f ⋆⋄

R
g.

The converse holds as we will see after the following lemma.

Lemma 3.6

For all f, g ∈ K[[x1, · · ·, xn]], if f
R

g, then f − g ∈ I(R), the ideal generated by R.

Proof. First, if f = g, then there is nothing to prove. Second, if f
R

g, then we have:

f = λ(m · LM<op (s)) + S, g = λ

LC<op (s) (m × r<op (s)) + S,

for λ ∈ K \ {0}, m ∈ [x1, · · ·, xn], s ∈ R and S ∈ K[[x1, · · ·, xn]] such that m · LM<op (s) /∈ supp (S).
Cancellations ensue in the computation of f − g, and we obtain:

f − g = λ

LC<op (s)m × s.

But s ∈ R ⊆ I(R) and I(R) is an ideal, therefore f − g ∈ I(R). Third, if f ⋆

R
g and f ̸= g,

then by induction on the length k ⩾ 1 of the rewriting sequence f = f0 f1 · · · fk = g,
we have f − g ∈ I(R). Finally, if we have f

R
g, then for every integer k ∈ N, there exists

fk ∈ K[[x1, · · ·, xn]] such that f ⋆

R
fk and:

δ(fk, g) <
1
2k

.

The sequence (fk)k∈N thus converges to g. From the third case treated in the current proof, for every
k ∈ N, we have f − fk ∈ I(R), so that f − g = limk→∞(f − fk) belongs to the topological closure
I(R) of I(R). Now, since ideals of commutative formal power series are topologically
closed, we have f − g ∈ I(R).

Theorem 3.7

For all f, g ∈ K[[x1, · · ·, xn]], if f ⋆

R
g, then f ≡ g (mod I(R)). In other words, we have:

⋆

R
⊆≡I(R).

Proof. Let f, g ∈ K[[x1, · · ·, xn]] such that f ⋆

R
g. Decompose that into the sequence:

f = h0 R
h1 R

· · ·
R

hℓ = g.
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By induction on ℓ: if ℓ = 0, then f = g and thus g−f = 0 ∈ I(R). Suppose that f
ℓ

R
h

R
g

for ℓ ∈ N and h ∈ K[[x1, · · ·, xn]] such that h − f ∈ I(R).
Since h

R
g, we have h

R
g or h

R
g. By Lemma 3.6, we get h − g ∈ I(R) or g − h ∈ I(R).

Notice how, since I(R) is an ideal, those two latter conditions are actually equivalent. Assume one
of them to be true, say g − h ∈ I(R).

Since I(R) is an ideal and by induction hypothesis, we obtain I(R) ∋ (g − h) + (h − f) = g − f ,
hence f ≡ g (mod I(R)).

Corollary 3.8

If the order < is compatible with the degree, then the equivalence relations ⋆

R
, ⋆⋄

R

and ⋆⋄
R

generated by
R

,
R

and
R

respectively are actually the same relation:
they are all equal to the congruence relation ≡I(R) modulo the ideal generated by R.

Proof. By Theorem 3.5, Theorem 3.7 and the trivial inclusions of the relations we obtain that:

≡I(R) ⊆ ⋆⋄
R

⊆ ⋆⋄
R

⊆ ⋆

R
⊆ ≡I(R)

Hence, the equality between all of them.

3.4 Properties of the rewriting relation commutative formal power series

Proposition 3.9

If the order < is compatible with the degree, then the relation of the system XR is
transitive.

Proof. First, let us prove that for all f, g, h ∈ K[[x1, · · ·, xn]] such that f
R

g
R

h we have f
R

h.
Let f, g, h ∈ K[[x1, · · ·, xn]] such that f

R
g and g

R
h. By definition, that latter relation implies

the existence of m ∈ [x1, · · ·, xn] and s ∈ R such that:

h = g − ⟨g|m · LM<op (s)⟩
LC<op (s) m × s.

Note how LM<op (g − h) = m · LM<op (s).
Let U be an open neighbourhood of h.
If g ∈ U , then U is also a neighbourhood of g and therefore, since f

R
g, we obtain f

R
h.

Assume thus that g /∈ U . Therefore, there exists NU ∈ N such that B
(
h, 1

2NU

)
⊊ U and

deg (LM<op (g − h)) < NU , i.e. δ(g, h) > 1
2NU

because the order is compatible with the degree.
Since we have f

R
g, there exists a sequence (fk)k∈N of formal power series in K[[x1, · · ·, xn]]

such that f0 = f and for all k ∈ N f ⋆

R
fk as well as limk→∞ fk = g.

By that latter limit property, we can assert the existence of KNU
∈ N such that for all k ⩾ KNU

we have δ(fk, g) ⩽ 1
2NU

. But, since also NU > deg (LM<op (g − h)) = deg (m · LM<op (s)), we get
⟨g|m · LM<op (s)⟩ =

〈
fKNU

∣∣∣m · LM<op (s)
〉

̸= 0 (non-zero because we rewrite g into h using m and
s).

Write:

f ′
KNU

= fKNU
−

〈
fKNU

∣∣∣m · LM<op (s)
〉

LC<op (s) m × s.

This is the direct successor of fKNU
that we obtain by rewriting m · LM<op (s) using the rule s.

Then, we compute h − f ′
KNU

= g − fKNU
.
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Thus, it follows that δ
(

h, f ′
KNU

)
= δ

(
g, fKNU

)
⩽ 1

2NU
.

Hence, we have exhibited f ′
KNU

∈ B
(
h, 1

2NU

)
⊂ U such that f ⋆

R
fKNU R

f ′
KNU

, which conludes
the first part of the proof.

By simple induction, it follows that for all f, g, h such that f
R

g ⋆

R
h we have f

R
h.

Now, let f, g, h ∈ K[[x1, · · ·, xn]] such that f
R

g
R

h. Then there exists a sequence (gk)k∈N

such that g0 = g and for all k ∈ N g ⋆

R
gk as well as limk→∞ gk = h.

Let ε ∈ R>0. Since limk→∞ gk = h, there exists Kε ∈ N such that δ(gKε
, h) < ε

2 . Thus we
have f

R
g ⋆

R
gKε

. But by the previous part of the proof, it follows that f
R

gKε
. Now, it

follows that there exists a sequence (fk)k∈N such that f0 = f and for all k ∈ N f ⋆

R
fk as well

as limk→∞ fk = gKε . Therefore, there exists K ′
ε ∈ N such that δ(fK′

ε
, gKε) < ε

2 . In conclusion,
we have on one hand δ(fK′

ε
, h) ⩽ δ(fK′

ε
, gKε) + δ(gKε , h) < ε

2 + ε
2 = ε and, on the other hand,

f ⋆

R
fK′

ε
. Hence f

R
h.

Proposition 3.10

If the order < is compatible with the degree, then the system XR is normalising with respect
to ⋆

R
.

Proof. By Dickson’s lemma, there exists S := {s1, · · ·, sr} ⊆ R such that ⟨LM<op (S)⟩ = ⟨LM<op (R)⟩.
For any f ∈ K[[x1, · · ·, xn]], consider Rf := {m · LM<op (s) ∈ supp (f) | m ∈ [x1, · · ·, xn] ∧ s ∈ R} =

{m · LM<op (si) | m ∈ [x1, · · ·, xn] ∧ i ∈ J1 .. rK}.
Let f ∈ K[[x1, · · ·, xn]] and let us construct by induction a sequence (fk)k∈N of formal power series

in K[[x1, · · ·, xn]].
Base step: f0 := f .
Induction step: Let k ∈ N such that f0

=
S

f1
=
S

· · · =
S

fk and for all i ∈ J0 .. k − 1K, if Rfi ̸=
∅ ̸= Rfi+1 then min< Rfi < min< Rfi+1 .

If Rfk
= ∅, then fk ∈ NF (X) and f = f0

⋆

S
fk. If that is the case, define all subsequent fk′ to

be equal to fk.
Otherwise, there exists a minimum element in Rfk

, denote it mk := min< Rfk
. By definition, it

means that we can rewrite mk in fk using a rule si ∈ S (i.e. there exists m ∈ [x1, · · ·, xn] such
that mk = m · LM<op (si)). Thus define:

fk+1 := fk − ⟨fk|mk⟩
LC<op (si)

m × si.

It follows that either Rfk+1 = ∅ or min< Rfk+1 > min< Rfk
, which allows us to continue the

induction.
Limit step: in any case, repeating this process ad infinitum yields a infinite Cauchy sequence.

Indeed, if at some point we have Rfk
= ∅, then the sequence is stationnary and therefore Cauchy.

Otherwise, we have deg (LM<op (fk1 − fk2)) = deg(mmin{k1,k2}) for any k1 ̸= k2 in N, therefore,
since the order is compatible with the degree and by induction hypothesis, we get that:

δ(fk1 , fk2) = 1
2deg(mmin{k1,k2}) −→

k1,k2→∞
0.

Since K[[x1, · · ·, xn]] is a complete metric space, (fk)k∈N being Cauchy implies there exists
g ∈ K[[x1, · · ·, xn]] such that limk∈N fk = g. Hence, we obtain f = f0 S

g and, therefore, f
R

g.
But, by construction, g is a normal form. Hence the result.
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Lemma 3.11

If the order < is compatible with the degree, then for all sequence (fk)k∈N of formal power
series convering to g ∈ K[[x1, · · ·, xn]] and for all m ∈ [x1, · · ·, xn], if for all k ∈ N, we have
LM<op (fk) ⩾ m, then LM<op (g) ⩾ m.

Proof. Assume we have LM<op (g) < m, then for all k ∈ N, LM<op (g − fk) < m. Since the order
is compatible with the degree, it follows that δ(g, fk) > 1

2deg(m) . Hence, fk cannot be converging to
g, a contradiction.

Proposition 3.12

If the order < is compatible with the degree, then the system X has globally attractive normal
forms (GANF).

Proof. Let ℓ ∈ NF (X). We start by showing that for all f, g ∈ K[[x1, · · ·, xn]] such that f g it
follows that LM<op (f − ℓ) ⩽ LM<op (g − ℓ). Let m < LM<op (f − ℓ). This means that ⟨f − ℓ|m⟩ =
0 from which we deduce ⟨f |m⟩ = ⟨ℓ|m⟩. Therefore, if m ∈ supp (f), then m is irreducible (since it
also appears in ℓ). Since f g, there exists a sequence (fk)k∈N such that f0 = f , f ⋆ fk for any
k ∈ N and limk→∞ fk = g. But, since all monomials m < LM<op (f − ℓ) that are in the support
of f are irreducible, it follows that LM<op (f − ℓ) ⩽ LM<op (fk − ℓ) for all k ∈ N. Hence by the
previous lemma, we get the result.

Now we conclude to GANF by using the uniform structure provided by the metric δ and noticing
that δ(f, ℓ) ⩾ δ(g, ℓ) by compatibility with the degree.

Since a metric space is always Hausdorff, we get by Propositions 3.9-3.10-3.12 and Theorem 2.52,
the following corollary:

Corollary 3.13

If the order < is compatible with the degree, the following properties are equivalent for the
system XR:

• Topological confluence,

• Infinitary confluence,

• Finitary confluence with respect to ⋆

R
or ⋆

R
,

• Church-Rosser property with respect to ⋆

R
, ⋆

R
or

R
.

• Normal form (NF) property with respect to
R

,
R

or
R

,

• Unique normal form (UN) property with respect to
R

,
R

or
R

.

3.5 Standard bases
Definition 3.14 : Standard basis

Let I be an ideal of K[[x1, · · ·, xn]].
A subset R of I \ {0} is said to be a standard basis of I according to the order < if it
satisfies:

∀f ∈ I \ {0} , ∃s ∈ R, ∃m ∈ [x1, · · ·, xn], LM<op (f) = m · LM<op (s) .
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A set R ⊆ K[[x1, · · ·, xn]] \ {0} is said to be standard basis according to the order < if
it a standard baiss of I(R), the ideal generated by R, according to the order <.

Definition 3.15 : Standard representation

Let R ⊆ K[[x1, · · ·, xn]] \ {0} and < an admissible monomial order.
We say that f ∈ K[[x1, · · ·, xn]] \ {0} admits a standard representation with respect
to R and < if there exists a finite subset {s1, · · ·, sr} ⊆ R and a r-tuple (q1, · · ·, qr) ∈
K[[x1, · · ·, xn]]r such that:

f =
r∑

i=1
qi × si with LM<op (f) = min

<
{LM<op (qi × si) | i ∈ J1 .. rK, qi ̸= 0} .

Note how if f has a standard representation with respect to R and < then automatically we have
f ∈ I(R) \ {0}. We will show that the converse implication is true if and only if R is a standard
basis.

Fix R ⊆ K[[x1, · · ·, xn]] \ {0} and < an admissible monomial order on [x1, · · ·, xn]. Consider the
topological rewriting system XR := (K[[x1, · · ·, xn]], τδ,

R
).

The following lemma follows in a straightforward manner from the definition of standard repre-
sentation:

Lemma 3.16

Let f ∈ K[[x1, · · ·, xn]] \ {0}. If f admits a standard representation with respect to R and
<, then it is in the ideal I(R) generated by R and is lead-reducible by

R
.

Lemma 3.17

Let f ∈ K[[x1, · · ·, xn]] \ {0}. If the order is compatible with the degree and if f
R

0, then
f admits a standard representation with respect to R and <.

Proof. Assume that f
R

0. By definition, this means that there exists S := {s1, · · ·, sr} ⊆ R and
a sequence (fk)k∈N such that f0 = f , fk

=
S

fk+1 for all k ∈ N and limk→∞ fk = 0.

We are going to define inductively a sequence
(

q
(k)
i

)
k∈N

for each i ∈ J1 .. rK such that their limits
form a standard representation of f with respect to S and <.

Base step: q
(0)
i := 0 for all i ∈ J1 .. rK.

Inductive step: let k ∈ N and suppose that the r sequences
(

q
(k)
i

)
k∈N

are constructed up to and
including the rank k in such a way that we have the following induction hypothesis:

f = fk +
r∑

i=1
q

(k)
i × si.

If fk = fk+1, then define q
(k+1)
i := q

(k)
i .

Otherwise, we know we must have fk S
fk+1. Hence, there exists ik ∈ J1 .. rK and mk ∈

[x1, · · ·, xn] such that:

fk+1 = fk − ⟨fk|mk · LM<op (sik
)⟩

LC<op (sik
) mk × sik

.

Then define q
(k+1)
i := q

(k)
i for any i ̸= ik and:

q
(k+1)
ik

:= q
(k)
ik

+ ⟨fk|mk · LM<op (sik
)⟩

LC<op (sik
) mk.
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By a simple computation and by making use of the induction hypothesis, we do indeed obtain the
following equality:

f = fk+1 +
r∑

i=1
q

(k+1)
i × si.

Thus, we can continue the induction.
Limit step: repeating this process ad infinitum this yields r sequences

(
q

(k)
i

)
k∈N

. Note how,
since (fk)k∈N is a Cauchy sequence (because it converges), the sequence (deg(mk))k∈N blows up
to infinity. It follows that for each i ∈ J1 .. rK, the sequence

(
q

(k)
i

)
k∈N

is Cauchy since it is either
stationary or consist of terms differing by ever-bigger monomials from the (mk)k∈N sequence. Note
q

(∞)
i the limit of

(
q

(k)
i

)
k∈N

for i ∈ J1 .. rK. The induction hypothesis gives us at the limit:

f = lim
k→∞

(
fk +

r∑
i=1

q
(k)
i × si

)
= 0 +

r∑
i=1

q
(∞)
i × si.

Moreover, the minimum min<

{
LM<op

(
q

(∞)
i × si

) ∣∣∣ i ∈ J1 .. rK, qi ̸= 0
}

is exactly the lowest
monomial rewritten in the reduction sequence f

R
0 which is obviously LM<op (f) because we

rewrite into zero and thus the only way to rid ourselves of the LM<op (f) is by rewriting it and its
coefficient will never be affected by subsequent reductions.

In conclusion, the set S = {s1, · · ·, sr} ⊆ R together with the r-tuple
(

q
(∞)
1 , · · ·, q

(∞)
r

)
∈

K[[x1, · · ·, xn]]r form a standard representation for f with respect to R and <.

Lemma 3.18

Let f ∈ K[[x1, · · ·, xn]] and α ∈ NF (X). Then, f α if, and only if, f − α 0.

Proof. Assume f α. Then there exists (fk)k∈N such that f0 = f , fk
= fk+1 for all k ∈ N and

limk→∞ fn = α. Consider the sequence (f ′
k)k∈N defined as f ′

k := fk−α for all k ∈ N. Thus f ′
0 = f−α.

For all k ∈ N, if fk = fk+1, then f ′
k+1 = f ′

k. Otherwise, fk fk+1, hence there exists m ∈
[x1, · · ·, xn] and s ∈ R such that ⟨fk|m · LM<op (s)⟩ ≠ 0 and fk+1 = fk − ⟨fk|m·LM<op (s)⟩

LC<op (s) m × s. But
since α is a normal form, ⟨α|m · LM<op (s)⟩ = 0 and hence ⟨fk|m · LM<op (s)⟩ = ⟨f ′

k|m · LM<op (s)⟩
and thus:

f ′
k+1 = fk+1 − α =

(
fk − ⟨fk|m · LM<op (s)⟩

LC<op (s) m × s

)
− α

= (fk − α) − ⟨fk|m · LM<op (s)⟩
LC<op (s) m × s

f ′
k+1 = f ′

k − ⟨f ′
k|m · LM<op (s)⟩

LC<op (s) m × s

Therefore, in either case, we have f ′
k

= f ′
k+1. Finally, we have limk→∞ f ′

k = (limk→∞ fk) − α =
α − α = 0. Hence f − α 0.

Assume that f − α 0. Hence, by Corollary 3.4 of translation, there exists g ∈ K[[x1, · · ·, xn]]
such that f g and α g. Since this implies α g and we also have that α ∈ NF (X), it follows
from Proposition 2.26 that α = g and hence f g = α.

Theorem 3.19 : (Characterisation of standard bases)

Let R ⊆ K[[x1, · · ·, xn]] \ {0} and < an admissible monomial order. Consider the topological
rewriting system XR := (K[[x1, · · ·, xn]], τδ,

R
). Denote by I := I(R) the ideal generated

by R.
Then, if the order < is compatible with the degree, all the following statements are equivalent:
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(i) the system XR is topologically confluent,

(ii) for all f ∈ I, we have f
R

0,

(iii) for all f ∈ I, we have f
R

0,

(iv) for all f ∈ I, we have f 0,

(v) for all f ∈ I \ {0}, then f admits a standard representation with respect to R and <,

(vi) for all f ∈ I \ {0}, then f is reducible,

(vii) the set R is a standard basis,

(viii) the map NF (X) → K[[x1,···,xn]]/I

α 7→ α + I

is bijective.

Proof. (i) ⇒ (ii) and (iii) and (iv): By Corollary 3.13, the assumption (i) implies the normal form
(NF) properties with respect to

R
,

R
and

R
. Let f ∈ I. Then f − 0 ∈ I, that is to say:

f ≡ 0 (mod I). By Theorem 3.8, it follows that f ⋆⋄
R

0, f ⋆⋄
R

0 and f ⋆

R
0. Finally, by

NF, since 0 is a normal form and the base relations are transitive, we obtain that f
R

0, f
R

0
and f

R
0.

(ii) ⇒ (v): This exactly the content of Lemma 3.17.
(iii) or (iv) ⇒ (vi): By contradiction, suppose (iii) or (iv) and ¬ (vi), let f ∈ I \{0}. By assumption

¬ (vi) we get that f is not reducible, i.e. f ∈ NF (XR). But by assumption (iii) or (iv), we have
f

R
0. Hence, by Proposition 2.26, it follows that f = 0, a contradiction.

(v) ⇒ (vi): This is evident with Lemma 3.16.
(vi) ⇒ (vii): By contradiction, assume (vi) and that there exists f ∈ I \ {0} such that LM<op (f)

is not divisible by any LM<op (s) for s ∈ R. By Proposition 3.10, there exists α ∈ NF (XR) such
that f

R
α. Hence, by Lemma 3.6, we have f − α ∈ I and f ̸= α since f ∈ I is reducible by

assumption (vi). Hence, we get that α ∈ I \ {0}, which means by assumption (vi) again, that α is
reducible, a contradiction.

(vii) ⇒ (viii): By contradiction, suppose the map is not injective. We thus have α, β ∈ NF (XR)
such that α ̸= β and α + I = β + I. It follows that α − β ∈ I \ {0}. By assumption (iv), there
exists s ∈ R such that LM<op (s) divides LM<op (α − β). This necessarily means that at least one
of LM<op (α) and LM<op (β) is reducible which contradicts α or β being normal forms.

(viii) ⇒ (i): By Corollary 3.13, showing topological confluence of XR is equivlaent to show-
ing the topological Church-Rosser property. Let f, g ∈ K[[x1, · · ·, xn]] such that f ⋆ g. By
Proposition 3.10, there exist α, β ∈ NF (XR) such that f α and g β. Then, α ⋆ β. By
Theorem 3.8, it follows that α − β ∈ I. By assumption (viii), we get that α = β. Hence, we obtain:

f g

α = β

⋆
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Example 3.20 : (Counter-example “topological confluence ⇒ confluence”)

Consider the K[[x, y, z]], < the deglex monomial order such that z < y < x and:

R =
{

z − x, z − y, y − y2, x − x2} .

Notice how R is a standard basis according to <. Indeed, LM<op (R) = {z, y, x} and for
any f ∈ I(R), we have val(f) ⩾ 1, hence by compatibiliy with the degree, it follows that
there exists ξ ∈ {z, y, x} such that LM<op (f) is divisible by ξ. By the previous theorem,
we conclude that the topological rewriting system associated to < and R is topologically
confluent.
However, consider the following branching:

y y2 · · · yk · · ·

z

x x2 · · · xk · · ·

The two branches will never join in a finite amount of steps, therefore the system cannot be
confluent.
Note how by topological confluent we can join the branches topologically. Indeed, notice
how the two branches converge to 0 for the topology, therefore we obtain:

y y2 · · · yk

z 0

x x2 · · · xk

3.6 Existence of chains for formal power series

Throughout this subsection fix n a positive integer, K a (commutative) field, < an admissi-
ble monomial order on [x1, · · ·, xn] and R a non-empty set of non-zero formal power series in
K[[x1, · · ·, xn]]. Write X := (X, τδ, ) the topological rewriting system where X := K[[x1, · · ·, xn]]
and :=

R
.

Theorem 3.21

If the order < is compatible with the degree, then chains exist in X if and only if for all
f, g ∈ K[[x1, · · ·, xn]] such that f lim g there exists h ∈ K[[x1, · · ·, xn]] such that f h g.

Proof. The left-to-right direction is trivially verified considering the Proposition ??.
To prove the other direction, we make use of the fact that, K[[x1, · · ·, xn]] being a metric space,

it is first-countable. Therefore, we can use Theorem ??. Let us fix the neighbourhood bases for
proxmity maps to be, for g ∈ K[[x1, · · ·, xn]], Bg

n := B
(
g, 1

2n

)
. Therefore, by compatibility with the

degree, the proximity maps are such that:

Pg(f) =

∞ if f = g,

deg(LM<op (f − g)) otherwise.
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Hence, for chains to exist it suffices to show that there exists h ∈ K[[x1, · · ·, xn]] such that
f ⋆ h g and deg(LM<op (h − g)) > deg(LM<op (f − g)).

Assume the right-hand side of the equivalence. Let f and g in K[[x1, · · ·, xn]] such that f g. If
f ⋆ g then trivially f g. Let us suppose then that f lim g. By hypothesis, this means that there

exists h0 ∈ K[[x1, · · ·, xn]] such that f h0 g. Now, necessarily h0 lim g because if h0
⋆ g

then we contradict f lim g. Therefore we can apply the hypothesis again on h0 lim g and find
h1 ∈ K[[x1, · · ·, xn]] such that h0 h1 lim g. And so on and so fourth, we construct a sequence
(hk)k∈N such that hk hk+1 and hk lim g for all k ∈ N.

Now, since f lim g, we have that, for all ℓ ∈ K[[x1, · · ·, xn]] such that ℓ lim g, ℓ and f agree on all
monomials that are strictly smaller that the minimum between LM<op (ℓ − g) and LM<op (f − g). In-
deed: write pmin ∈ {f, ℓ} the formal power series such that LM<op (pmin − g) = min< {LM<op (f − g) , LM<op (ℓ − g)};
assume that there exists m0 ∈ [x1, · · ·, xn] such that m0 < LM<op (pmin − g) and ⟨f |m0⟩ ≠ ⟨ℓ|m0⟩.
By the first assumption, we get that ⟨f − g|m0⟩ = ⟨ℓ − g|m0⟩ = 0 from which we deduce that
⟨f |m0⟩ = ⟨ℓ|m0⟩, a contradiction of the second assumption.

Now, since we have finitely many variables and the order is compatible with the degree, there are
only finitely many monomials m such that m ⩽ LM<op (ℓ) for any fixed non-zero ℓ ∈ K[[x1, · · ·, xn]].
Therefore, the infinite sequence (hk)k∈N cannot verify that LM<op (h0 − g) ⩽ LM<op (f − g) because
otherwise this would mean we have rewritten in f a monomial m smaller than LM<op (f − g) (thus,
⟨f |m⟩ = ⟨g|m⟩) and so, we would have ⟨h0|m⟩ = 0. However, we must have h0 lim g so we must be
able to “recover” the correct coeffient of m which is possible only by rewriting monomials that are
smaller than m. But this means that we have the same problem for those smaller monomials that
we rewrite, and since they are finitely many of them and that the sequence (hk)k∈N is infinite, this
is impossible.

Finally, by repeating this reasoning on the sequence (hk)k∈N, we get that:

LM<op (f − g) < LM<op (h0 − g) < LM<op (h1 − g) < · · · .

Hence, since we have finitely many variables and the order is compatible with the degree,
it follows that there necessarily exists a k ∈ N such that Pg(hk) = deg(LM<op (hk − g)) >

deg(LM<op (f − g)) = Pg(f), which concludes the proof that chains exist.

Example 3.22 : (Chains do not always exist for commutative formal power series)

Consider K[[x, y]] with the usual adic topology, < the deglex monomial order with x < y

and the relation defined by:
R :=

{
x − yk

∣∣ k ⩾ 1
}

.

Then, we can see that x 0 because x yk for any k ⩾ 1 and limk∈N yk = 0.
However, we do not have any rewriting chains from x to 0 (i.e. we do not have x 0)
because each yk (k ⩾ 1) is a normal form in the system.

Theorem 3.23 : (CHAINS CONJECTURE)

Here is a following conjecture that remains to be proven or disproven:
If the order < is compatible with the degree and R is finite, then chains exist in the system.

Todo: show special cases that have been proven (if R is a standard basis, if the formal power
series considered are actually polynomials, etc.).
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